
在数据分析与机器学习中,我们经常要用到大量的可视化操作。一张制作精美的数据图片,不仅能展示大量的信息,更能快速传达作者的想法、态度、水平、以及审美等素质水平。
而在可视化中,matplotlib 算得上是最常用的工具。matplotlib 是 python 最著名的绘图库,它提供了一整套 API,十分适合绘制图表,或修改图表的一些属性,如字体、标签、范围等。
今天这篇文章,我们将介绍 15 种最常用的 matplotlib 可视化图表,并提供了 Python 源码,欢迎来实验楼,亲手感受一下将枯燥的数据,变为华丽的图表的神奇旅程。
(教程内容来自异步社区出版的《Python 金融大数据分析》一书,实验楼进行改编并提供线上实验环境)
课程地址:
Python 金融数据可视化www.shiyanlou.com

开始练习之前,首先你需要安装 matplotlib。实验楼为大家提供了已经安装好了各个模块的实验环境,推荐直接来实验楼练习。
绘制表格前,我们当然还需要一组数据。这里我们生成一组伪随机数,作为后面绘图的数据:
import 基础图表
最简单的图表可以使用 pyplot 子库制作。pyplot 子库中的 plot 函数是最基础的绘图函数,但是也相当强大。原则上,它需要两组数值。
- x 值:包含 x 坐标(横坐标)的列表或者数组
- y 值:包含 y 坐标(纵坐标)的列表或者数组
代码:
import 效果:

网格图表:

代码:
plt.plot(y.cumsum())
plt.grid(True) # 添加网格线
plt.axis('tight') # 紧凑坐标轴添加标签的图表:

代码:
plt二维数据图表:

代码:
plt二维数据子图:

代码:
plt线图/点图和柱状图结合:

代码:
plt散点图:

代码:点击课程查看 —— Python 金融数据可视化
三维散点图:

代码:点击课程查看 —— Python 金融数据可视化
直方图:

代码:点击课程查看 —— Python 金融数据可视化
堆叠直方图:

代码:点击课程查看 —— Python 金融数据可视化
箱形图:

代码:点击课程查看 —— Python 金融数据可视化
3D 图:

代码:点击课程查看 —— Python 金融数据可视化
3D 散点图:

代码:点击课程查看 —— Python 金融数据可视化
在信息化时代,通过数据可视化,我们可以更直观地看到信息本身,对于从业金融或者对金融感兴趣的人来说,这是必备的技能。
篇幅有限无法介绍 Matplotlib 的所有功能,欢迎大家来实验楼动手学习,learning by doing!
Python 金融数据可视化www.shiyanlou.com
217

被折叠的 条评论
为什么被折叠?



