Python一亿以内的素数个数_Python 计数质数

本文探讨如何使用Python实现埃拉托斯特尼筛法和欧拉筛法来寻找一亿以内的素数,并分析两种算法的时间复杂度和存储需求。埃拉托斯特尼筛法略过偶数,减少计算,而欧拉筛法避免重复标记合数,提高效率。通过这两种方法,可以在个人电脑上快速计算出一亿以内的素数。
摘要由CSDN通过智能技术生成

一个很经典的问题,从 2 到 N ,一共有多少个质数??

一个非常 Naive 的方法,从 2 到 N,判断每个数是不是质数

只判断一个数是不是质数,需要

的时间,现在有 N 个数,那么就是

埃拉托斯特尼筛法

这是一种简单且历史悠久的筛法,用来找出一定范围内所有的素数。

eee582976c2069406d0808540afc28b5.png
来自中文维基百科
def get_primes1(n:int) -> list:
    '''return a list containing all the primes less than n'''
    if n <= 2:
        return []
    isprime = [True for _ in range(n)]
    result = [2]
    for i in range(3, n, 2):
        if isprime[i]:
            result.append(i)
            for j
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值