
Python 基础知识
Python,谨记‘3个’‘4类’‘5大’‘6种’这四个数字。
三个基本概念
1. 结构化(函数、模块、包)
2. 面向对象(类及派生类、重载)
3. 虚拟环境(版本管理、环境隔离)
四类基本操作
1. 数据操作(各种数据类型的操作)
2. 文件操作(文件打开读写关闭等操作)
3. 模块操作(导入使用、模块查询等操作)
4.并发操作(进程与线程、锁/信号号/安全队列等)
五大基本语句(5)
1. 赋值语句(变量、对象、赋值运算符)
2. 输入输出语句(print, input函数)
3. 条件判断语句(if-elif-else语句)
4. 循环语句(遍历循环for-in-else、条件循环while-else、break/continue)
5. 异常处理语句(try-except-else-finally)
六种数据类型(6)
1. 数字类型(int,bool,float,complex)
2. 字符串(str)
3. 列表(list)
4. 元组(tuple)
5. 字典(dict)
6. 集合(set)
Python 特点
- Python 是完全面向对象的语言
- 函数、模块、数字、字符串都是对象,在 Python 中一切皆对象
- 完全支持继承、重载、多重继承
- 支持重载运算符,也支持泛型设计
- Python 拥有一个强大的标准库,Python 语言的核心只包含 数字、字符串、列表、字典、文件 等常见类型和函数
Python 程序执行原理

- 操作系统会首先让 CPU 把 Python 解释器 的程序复制到 内存 中
- Python 解释器 根据语法规则,从上向下 让 CPU 翻译 Python 程序中的代码
- CPU 负责执行翻译完成的代码
# 执行以下终端命令可以查看 Python 解释器的大小
# 1. 确认解释器所在位置
$ which python
# 2. 查看 python 文件大小(只是一个软链接)
$ ls -lh /usr/bin/python
# 3. 查看具体文件大小
$ ls -lh /usr/bin/python3.6
Python数据类型
可以分为 数字型 和 非数字型
- 数字型
- 整型 (
int
) - 浮点型(
float
) - 布尔型(
bool
)- 真
True
非 0 数
—— 非零即真 - 假
False
0
- 真
- 复数型 (
complex
)- 主要用于科学计算,例如:平面场问题、波动问题、电感电容等问题
- 整型 (
- 非数字型
- 字符串
- 列表
- 元组
- 字典
- 在
Python
中,所有 非数字型变量 都支持以下特点:
- 都是一个 序列
sequence
,也可以理解为 容器 - 取值
[]
- 遍历
for in
- 计算长度、最大/最小值、比较、删除
- 链接
+
和 重复*
- 切片









1-退出循环
break continue if Ctrl+C
break
语句可以在循环过程中直接退出循环,而continue
语句可以提前结束本轮循环,并直接开始下一轮循环。这两个语句通常都必须配合if
语句使用。
要特别注意,不要滥用break
和continue
语句。break
和continue
会造成代码执行逻辑分叉过多,容易出错。大多数循环并不需要用到break
和continue
语句,上面的两个例子,都可以通过改写循环条件或者修改循环逻辑,去掉break
和continue
语句。
有些时候,如果代码写得有问题,会让程序陷入“死循环”,也就是永远循环下去。这时可以用Ctrl+C
退出程序,或者强制结束Python进程。
例 只打印奇数,可以用continue
语句跳过某些循环:
n = 0
while n < 10:
n = n + 1
if n % 2 == 0: # 如果n是偶数,执行continue语句
continue # continue语句会直接继续下一轮循环,后续的print()语句不会执行
print(n)
2-不可变对象
str是不变对象,而list是可变对象。
对于可变对象,比如list,对list进行操作,list内部的内容是会变化的,比如:
>>> a = ['c', 'b', 'a']
>>> a.sort()
>>> a
['a', 'b', 'c']
而对于不可变对象,比如str,对str进行操作呢:
>>> a = 'abc'
>>> a.replace('a', 'A')
'Abc'
>>> a
'abc'
虽然字符串有个replace()
方法,也确实变出了'Abc'
,但变量a
最后仍是'abc'
,应该怎么理解呢?
我们先把代码改成下面这样:
>>> a = 'abc'
>>> b = a.replace('a', 'A')
>>> b
'Abc'
>>> a
'abc'
要始终牢记的是,a
是变量,而'abc'
才是字符串对象!有些时候,我们经常说,对象a
的内容是'abc'
,但其实是指,a
本身是一个变量,它指向的对象的内容才是'abc'
:

当调用a.replace('a', 'A')
时,实际上调用方法replace
是作用在字符串对象'abc'
上的,而这个方法虽然名字叫replace
,但却没有改变字符串'abc'
的内容。相反,replace
方法创建了一个新字符串'Abc'
并返回,如果我们用变量b
指向该新字符串,就容易理解了,变量a
仍指向原有的字符串'abc'
,但变量b
却指向新字符串'Abc'
了:

所以,对于不变对象来说,调用对象自身的任意方法,也不会改变该对象自身的内容。相反,这些方法会创建新的对象并返回,这样,就保证了不可变对象本身永远是不可变的。
3-定义默认参数要牢记一点:默认参数必须指向不变对象!
4-把函数的参数改为可变参数
nums *nums
def calc(*numbers):
sum = 0
for n in numbers:
sum = sum + n * n
return sum
定义可变参数和定义一个list或tuple参数相比,仅仅在参数前面加了一个*
号。在函数内部,参数numbers
接收到的是一个tuple,因此,函数代码完全不变。但是,调用该函数时,可以传入任意个参数,包括0个参数:
>>> calc(1, 2)
5
>>> calc()
0
如果已经有一个list或者tuple,要调用一个可变参数怎么办?可以这样做:
>>> nums = [1, 2, 3]
>>> calc(nums[0], nums[1], nums[2])
14
这种写法当然是可行的,问题是太繁琐,所以Python允许你在list或tuple前面加一个*
号,把list或tuple的元素变成可变参数传进去:
>>> nums = [1, 2, 3]
>>> calc(*nums)
14
*nums
表示把nums
这个list的所有元素作为可变参数传进去。这种写法相当有用,而且很常见。
5-关键字参数
可变参数允许你传入0个或任意个参数,这些可变参数在函数调用时自动组装为一个tuple。
关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict。
6-迭代对象与迭代器
直接作用于for
循环的数据类型有以下几种:
一类是集合数据类型,如list
、tuple
、dict
、set
、str
等;
一类是generator
,包括生成器和带yield
的generator function。
检查一个对象是否是Iterator
对象:
>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False
生成器都是Iterator
对象,但list
、dict
、str
虽然是Iterable
,却不是Iterator
。
把list
、dict
、str
等Iterable
变成Iterator
可以使用iter()
函数:
>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True
7-为什么list
、dict
、str
等数据类型不是Iterator
?
这是因为Python的Iterator
对象表示的是一个数据流,Iterator对象可以被next()
函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration
错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()
函数实现按需计算下一个数据,所以Iterator
的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator
甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。
小结
凡是可作用于for
循环的对象都是Iterable
类型;
凡是可作用于next()
函数的对象都是Iterator
类型,它们表示一个惰性计算的序列;
集合数据类型如list
、dict
、str
等是Iterable
但不是Iterator
,不过可以通过iter()
函数获得一个Iterator
对象。
Python的for
循环本质上就是通过不断调用next()
函数实现的,例如:
for x in [1, 2, 3, 4, 5]:
pass
实际上完全等价于:
# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
try:
# 获得下一个值:
x = next(it)
except StopIteration:
# 遇到StopIteration就退出循环
break
8-函数-实参-形参-关键字参数-默认参数----混合参数




9-pandas read_csv参数index_col = None,0,False的区别
index_col的值有三种,整数型,序列,布尔,并且是可选的,默认是None
在默认为None的时候,pandas会自动将第一列作为索引,并额外添加一列。所以大多我们会使用index_col=0
,直接将第一列作为索引,不额外添加列。
10-randint(下限,上限,n)指在下限和上限之间取出n个整数
- Python工程结构
