python离散点的线性回归方程_讨论8种在Python环境下进行简单线性回归计算的算法...

对于大多数数据科学家而言,线性回归方法是他们进行统计学建模和预测分

析任务的起点。但我们不可夸大线性模型(快速且准确地)拟合大型数据集的重要性。如

本文所示,在线性回归模型中,

「线性」一词指的是回归系数,而不是特征的

degree

特征(或称独立变量)可以是任何的

degree

,甚至是超越函数(

transcendental function

)

比如指数函数、对数函数、正弦函数。因此,很多自然现象可以通过这些变换和线性模型

来近似模拟,即使当输出与特征的函数关系是高度非线性的也没问题。

另一方面,由于

Python

正在快速发展为数据科学家的首选编程语言,所以能够意识到存

在很多方法用线性模型拟合大型数据集,就显得尤为重要。同样重要的一点是,数据科学

家需要从模型得到的结果中来评估与每个特征相关的重要性。

然而,在

Python

中是否只有一种方法来执行线性回归分析呢?如果有多种方法,那我们

应该如何选择最有效的那个呢?

由于在机器学习中,

Scikit-learn

是一个十分流行的

Python

库,因此,人们经常会从这个

库调用线性模型来拟合数据。

除此之外,

我们还可以使用该库的

pipeline

FeatureUnion

功能(如:数据归一化、模型回归系数正则化、将线性模型传递给下游模型)

,但是一般

来看,如果一个数据分析师仅需要一个又快又简单的方法来确定回归系数

(或是一些相关

的统计学基本结果)

,那么这并不是最快或最简洁的方法。

虽然还存在其他更快更简洁的方法,但是它们都不能提供同样的信息量与模型灵活性。

请继续阅读。

有关各种线性回归方法的代码可以参阅笔者的

GitHub

。其中大部分都基于

SciPy

SciPy

基于

Numpy

建立,

集合了数学算法与方便易用的函数。

通过为用户提供高级命令,

以及用于操作和可视化数据的类,

SciPy

显著增强了

Python

的交互式会话。

以下对各种方法进行简要讨论。

方法

1

Scipy.polyfit( )

numpy.polyfit( )

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页