均匀分布 卡方分布_高等数理统计—第一章 统计分布基础

才疏学浅,关于数理统计的很多内容仅流于表面,望读者不吝赐教。

第一章 统计分布基础

本章除指数分布族、
分布本科一般不学之外,其余基本上都是很简单的内容。

已故的陈希孺院士在《高等数理统计学》一书的序中写到:“多做习题,尤其是多做难题,对掌握并熟练数理统计学基本的论证方法和技巧,有着不可替代的重要性”。陈院士的《高等数理统计学》六百多页厚厚的一本书,有近一半的内容是习题与解答,可见对其重视,望大家在学习的过程中牢记做题的重要。

1.1 基础理论及方法

1.1.1 统计结构

数据(客观存在)

样本(抽象出的对象)

样本最常见的形式为随机向量

,样本的取值空间称为
样本空间

确定样本的概率分布是整个统计中最关心的问题

通常,样本的真实分布未知,但可以确定一个合理的范围(分布集合),真实的概率分布就在其中,该分布集合即为概率分布族

二元体(样本,样本的概率分布族)

样本空间记作

, 为了与概率论区分,我们用
来表示。将样本空间中的某些子集组成的
域 (也叫事件域) 记作
, 由此可以得到一个可测空间
,样本的概率分布族就是该可测空间上的概率分布族,用
表示。

三元体(

定义

为可测空间,
上的一族概率测度(
为指标集也叫参数空间),称三元体
为一个
统计结构或统计模型。

称取值于
上的随机元
样本

中的每一个成员
为一个
总体

因此我们统计上常有这样的说法:
为来自总体的容量为
的简单样本,总体的概率密度函数为
.

1.1.2 常用公式

矩母函数:随机变量

,若存在某正实数
,使得对于区间
中的每一实数
,数学期望
均存在,则称
为随机变量
或其分布的
矩母函数(mgf)

最常用的是:

特征函数:就写个函数形式吧,可能暂时也用不着

,其中
是虚数

矩母函数和特征函数与随机变量的概率分布唯一确定。

两个常用的条件期望:

1.1.3 经验分布函数

考虑独立同分布的样本

,给定
,记
表示
中小于
的个数,概率
可用频率
来逼近。即:经验分布函数定义为
,也可表示为
.

由大数定律可知,对任意

,总有
.这表明只要
越来越大,样本的经验分布函数
可以越来越接近总体分布函数
.此外,还有比大数定律更强的结论:

格里汶科定理:对任意给定的正整数

,设
是取自总体分布函数
的一个样本观察值,
为其经验分布函数,记
,则有
.

1.2 常用分布及指数族分布

2f84df8e5d2c9e1da7942f51d2db31d5.png
常用分布间的关系(图侵删)

1.2.1 常用离散分布

两点分布( Bernoulli 伯努利分布)

仅取0,1两个值:
.

密度函数为

二项分布

二项分布可以表示为独立同分布的两点分布之和

密度函数为

可加性:

且独立,则

负二项分布

表示
次成功所经历的失败的次数,该分布使用次数较少,后续若有用到我们再详解介绍

Poisson分布(泊松分布)

密度函数为

基本性质:(1)

(2)可加性:若
且相互独立,则

1.2.2 常用连续分布

均匀分布

密度函数

指数分布

密度函数

正态分布

密度函数

对数分布

研究随机分析必学,就是将随机变量取对数后,服从正态分布。

分布(卡方分布)

卡方分布由

个独立同分布的
标准正态分布的平方和构成,密度函数我们一般不用,

分布

且独立,密度函数我们一般也不用,
,与其他分布的关系
(根据其构造就可以看出来),此外当
.

分布

且独立,
方差一般不用

分布(伽马分布)

伽马分布和我们上述提到的分布都多少会有些联系.

密度函数

两种密度函数本质都是一个,区别仅在于
互为倒数,我们以前者为准。
称为形状参数,
称为尺度参数

与其他分布的关系:(1)

(2)

(3)

可加性:

1.2.3 指数族分布

指数族分布 不是 指数分布族,切记

定义

称为
指数族分布,若其密度函数可以表示为:

其中,

为非负可测函数,若
分别线性无关,则称指数族为极小、满秩的。
上述的线性无关是参数可识别的必需条件。

例1:正态分布

,

密度函数展开后为

其中

很明显可以看到,
的形式不唯一,可以自由安排常数系数的位置

指数族的自然形式

定义

,其密度函数可以表示为:

其中,

,则称其为自然形式的指数族,若
线性无关,则称指数族为极小、满秩的。
其实看上去没啥太大区别对吧,很多教材上也没有说为什么,或者说了但是没说明白。为此翻阅了陈希孺院士的《高等数理统计》,其中是这么说的,参数空间
中每一元
都满足(1)式,,但
不一定包含了全部满足(1)式的
。因此全部这样的
构成一集合
,它是该指数族参数空间可能最大的扩充,称为该指数型分布族的
自然参数空间。因此也就有了(2)的自然形式的指数族。

关于自然参数形式我们补充两个定理:

定理1.1 设分布族的概率密度函数由(2)式给出,若参数空间

包含内点,则统计量
就是一个完全充分统计量。
参照那汤松《实变函数论》里对内点的定义,我们总结一个不是那么严谨但是够用的结论:开区间里的点都是它的内点,因此在进行了线性变换后得到的
若是开集,那就必然包含内点,进而在
线性无关的前提下,
是完全充分统计量。

定理1.2 设分布族的概率密度函数由(2)式给出,设

且为
的一个内点,
为样本空间
上的一个函数,若当
的某个邻域内时数学期望
存在,那么作为
的函数,
的某个邻域内关于
可求任意阶(偏)导数,且可以在积分号下求偏导数。我们有以下结果:

例2:设

独立同分布,均服从参数为
的对数正态分布,即
,概率密度函数为
,易看出样本的概率密度为:

其中参数空间为

.

对于样本的概率密度函数,可以写成

,这里写的是指数族分布的普通形式,与(1)式对应。其中

存在参数变换

,使得
,在变换
下原参数空间与值域
是重合的。

由此,分布族的自然参数形式为

,这里的
,利用式(3)给出的计算方法,我们有

以及

,

其中

,因此我们得到

这个例子非常典型。

1.3 次序统计量

这个在基础的数理统计上有,这里简单的回顾一下

基本分布:记

的分布密度为

推论:最小值和最大值的分布密度函数分别为:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值