plt格式转换器_用python做时间序列预测二:时间序列的一般数据格式和可视化

本文详细介绍了如何使用Python从CSV文件中读取时间序列数据,并利用matplotlib和seaborn进行可视化展示。首先,通过pandas的read_csv函数读取数据,设置日期解析器,然后使用matplotlib创建图表进行数据展示。内容涵盖了日期格式解析、数据帧操作及时间序列数据的可视化方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文将介绍如何通过python来读取、展现时间序列数据。

读取

时间序列数据一般用cvs等电子表格的形式存储,这里以cvs为例:

from dateutil.parser import parse
from datetime import datetime
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
params = {
'font.family': 'serif',         
'font.serif': 'FangSong',         
'font.style': 'italic',         
'font.weight': 'normal',  # or 'blod'         
'font.size': 12,  # 此处貌似不能用类似large、small、medium字符串         
'axes.unicode_minus': False         
}
rcParams.update(params)
import matplotlib.pyplot as plt
import pandas as pd
# 未来pandas版本会要求显式注册matplotlib的转换器,所以添加了下面两行代码,否则会报警告
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()

# Import as Dataframe
date_parse = lambda x: datetime.strptime(x, '%Y-%m-%d')
ser = pd.read_csv(
'https://raw.githubusercontent.com/selva86/datasets/master/a10.csv',
index_col='Month', # 指定索引列                  
parse_dates=['Month'], # 将指定列按照日期格式来解析                  
date_parser=date_parse) # 日期格式解析器
ser .head()

可视化

import matplotlib.pyplot as plt
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'], index_col='date')

# Draw Plotdef plot_df(df, x, y, , xlabel='Date', ylabel='Value', dpi=100):
plt.figure(figsize=(16,5), dpi=dpi)
plt.plot(x, y, color='tab:red')
plt.gca().set(title=title, xlabel=xlabel, ylabel=ylabel)
plt.show()

plot_df(df, x=df.index, y=df.value, title='Monthly anti-diabetic drug sales in Australia from 1992 to 2008.')

7046b24e686b61aec1a00462a33084b9.png

本篇介绍了时间序列的一般数据格式和基于python的可视化方法,下一篇将介绍时间序列的分解方法,目的是通过分解出的时间序列的各个成分来进一步的了解时间序列。

ok,本篇就这么多内容啦~,感谢阅读O(∩_∩)O。

为您推荐

我是如何通过系统架构师软考的?

自然语言处理之BERT介绍

pycharm2019和idea2019版永久激活

Windows10搭建深度学习环境

用机器学习打造聊天机器人(三) 设计篇

如何在阿里云租一台GPU服务器做深度学习?

手把手教你用深度学习做物体检测(一): 快速感受物体检测的酷炫

名句分享

高手都是持续性习惯,废人都是间歇性自虐。—— 佚名

80ba90f6714e962f06a88d0df3082600.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值