linux 执行sh没有结果,linux执行.sh命令会报错,请教大神是哪里出问题了?

满意答案

02ae427d08e371d7e90d5b995e828d6d.png

vip1999

推荐于 2016.11.21

02ae427d08e371d7e90d5b995e828d6d.png

采纳率:40%    等级:11

已帮助:6252人

严格来说,你的命令不是很严格。先不说这个问题了。

你的写法思路正确,只是在处理管道前边得到的内容时有三个小小的错误。

第一,要把grep 进程也一并过滤去。

grep 123换成grep -i grep |grep 123

第二,我们要处理这种情况,这就是不严格的所在。如果出现了出现进程名称也是123和1234的话,我们怎么处理,所以应该把awk '{print $2}'放到grep -i grep |grep 123它们之前,即grep -i grep | awk '{print $2}' |grep 123

第三,如果有两个或多个进程的id包含123,当然这种情况例外了一些,kill 前边的管道会返回多个值,如下

2123

1234

12345

这时通过kill命令执行一定会报错。

所以要做进一步修改

print $2要改成printf $2" "

这样如果遇到上面的特例,kill前边的管道就会得到:

"2123 1234 12345 "不包含引号

所以按照你的思路正确的做法是,

ps -ef |grep -i grep |awk '{printf $2" "}' |grep 123 | kill -9

其它有更好的实现,更建议用pkill和pgrep。多看man手册还是有好处的。有几位已经写到,不赘述了就。追问: 我想问问 这个写法是没错的, 就是这样执行的结果会执行后面的ERROR内容,这会是哪里的问题??

00分享举报

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于tensorflow2.x卷积经网络字符型验证码识别 卷积经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。 全连接层(Fully Connected Layer): 在CNN的末端,通常有几层全连接层(也称为密集层或线性层)。这些层中的每个经元都与前一层的所有经元连接。 全连接层通常用于对提取的特征进行分类或回归。 训练过程: CNN的训练过程与其他深度学习模型类似,通过反向传播算法和梯度下降(或其变种)来优化网络参数(如滤波器权重和偏置)。 训练数据通常被分为多个批次(mini-batches),并在每个批次上迭代更新网络参数。 应用: CNN在计算机视觉领域有着广泛的应用,包括图像分类、目标检测、图像分割、人脸识别等。 它们也已被扩展到处理其他类型的数据,如文本(通过卷积一维序列)和音频(通过卷积时间序列)。 随着深度学习技术的发展,卷积经网络的结构和设计也在不断演变,现了许多新的变体和改进,如残差网络(ResNet)、深度卷积生成对抗网络(DCGAN)等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值