gets函数会读取回车吗_会做二次函数吗?用6种方法教你做二次函数(初中生不要错过)...

二次函数难做吗?数学一直秉承着没有最难只有更难。今天就来教大家解决二次函数的各种问题吧!

264a26b192011a0159189f761f44ead3.png

类型一 等腰三角形的存在性问题

【方法指导】

fe8eea910132c57b021b1b7a7f407f72.png
21a1e440c58a82e538f00a8bbfb52837.png

【典例精讲】

例  如图,直线y=x+3与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c经过点A、C,与x轴交于另一点B,且B(1,0).

b97681bd6eee53a0f9d95e87111779ce.png

(1)求该抛物线的解析式。

【思维教练】

5e8c749d0618f9ab45f3606f46b94884.png
bd045a17d971d5eba21352720e977e78.png

类型二  直角三角形的存在性问题

【方法指导】

889bc6b7bae816363f07033d291bf051.png
dc2b1abfff404063f8f68764a715eb94.png

【典例精讲】

例  如图,在平面直角坐标系中,抛物线图象过点C(6,6),并与x轴交于原点O和A(4,0),且抛物线顶点为D.

ac609526ec8d06f85a2800bcf833ec5d.png

(1)求此抛物线的解析式;

【思维教练】要求抛物线的解析式,已知抛物线与x轴有两个交点,故可考虑设抛物线的两点式,再将C点代入即可.

2f54220597a6fdc7b107704299c1e13f.png
19e18483b80bd0228a9832e7c7a42a36.png
10a40b4f7bedb9a0053eaff215addcf7.png

类型三 特殊四边形的存在性问题

【方法指导】

①平行四边形的判定

78a6473e29070dbfa8cf0cbdacb9c9e2.png

②矩形、菱形的判定方法参照①中平行四边形的判定.

a829b15114b352ea0af6f6919723362d.png

【典例精讲】

8cb9c06a311cec9cde78013aa1b722b0.png
bef458d37d33e473a11f1fdc74355928.png
4447c0a9930e8a697c431b5232c3c68e.png
a32c82d81d41c28a8de59188af70fd98.png

类型四 相似三角形的存在性问题

【方法指导】

△ABC与△DEF相似,在没指明对应点的情况下,理论上应分六种情况讨论,但实际问题中通常不超过四种,常见有如下两种类型,每类分两种情况讨论就可以了.

b17a0c2e4ef90a5206d596527dbe81fa.png

另外,如果不满足以上两种情况,①但可以确定已知三角形的形状(特征)时,先确定动态三角形中固定的因素,看是否与已知三角形中有相等的角,若存在,根据分类讨论列比例关系式求解;②已知条件中有一条对应边,只需要讨论另外两条边的对应关系,列比例关系式求解;③若可得相似三角形的某个对应角的度数时,分类讨论另外两个角的对应情况,列比例关系式求解.

【典例精讲】

23db3c4d697e53a89e8d6d06008018e0.png
7da64ca7a00d0cf957b04b4276f58130.png

类型五 全等三角形的存在性问题

【方法指导】

全等的两个三角形,在没指明对应点的情况下,理论上应分六种情况讨论,但实际问题中通常不超过四种,常见有如下两种类型,每类分两种情况讨论就可以了.

5261809830b5fe657b7be1745e59f5f0.png
dd9508e9f0b94246416827d1cc4b6b02.png
3cfd438e9718592de52753e47a3155b9.png
ce18405c3c7f931934d82e77c19466a0.png

类型六 切线问题

【方法指导】

抛物线中有关圆的切线的问题,一般为两种类型:①已知直线与圆相切的相关计算;②已知直线与圆相切,求直线解析式.对这两种问题,一般解题方法如下:

①已知圆与直线相切时,连接切点与圆心,得到垂直,再结合题干中的已知条件,利用直角三角形或相似三角形的性质进行计算;若判断抛物线对称轴与圆的位置关系,只要根据圆心到对称轴距离与圆半径大小关系即可确定;

②若已知圆与直线相切,需根据题意分析,切线只存在一条,还是两条,若为两条,常要进行分类讨论计算,然后根据勾股定理或相似列方程求出点坐标,得到直线解析式.

【典例精讲】

49760df1a4330ba565046041f256dcf0.png
7d4b83bbfaf86b2d437049d15ecb858f.png
95be7c101ad344bdf7a7208cf82ba0b8.png
596f7931b3c6eef65dadff0e97c4072d.png

更多关于学习方法,可以关注我们哟(获取完整版私我)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值