python卷积神经网络预测股价_AI爱炒股之一,卷积神经网络预测股价

本文介绍了斯坦福大学Ashwin Siripurapu用卷积神经网络预测股价的研究。该研究通过历史股价波动图片训练模型,选取过去30分钟最高价和最低价,用对数差计算价格波动,以L2范数为损失函数。虽结果不佳,但思路新颖,未来或能实现看K线图炒股的机器人。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人工智能就其本质而言,是对人的思维的信息过程的模拟.人工智能已经成功应用在指纹识别,人脸识别,语音识别,图像识别等很多领域,并取得巨大成功。今年阿尔法狗在围棋上战胜职业九段选手李世石,再次将人工智能推向一个新高度。

最近斯坦福大学计算机系的Ashwin Siripurapu发表了一篇文章,《Convolutional Networks for Stock Trading》(卷积网络进行股票交易),首次使用卷积网络进行股票交易预测。

卷积神经网络是人工神经网络的一种,已成为当前语音分析和图像识别领域的研究热点。它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。该优点在网络的输入是多维图像时表现的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程。关于卷积神经网络的更多更详细信息,请大家自行搜索。

这篇论文的主要方法,就是通过历史股价波动的图片,训练卷积神经网络,来预测未来股价的运行,以此来买卖股票,获取利润。

历史数据使用的是标普500etf 分钟级数据,包括交易的时间,每分钟收盘价,最高价,最低价,开盘价和交易量。

作者在选择模型输入的时候,只选择了过去30分钟的最高价和最低价,因为作者认为最高价和最低价是开盘价和收盘价的隐式的上下界,比这两个价格包含更多的信息。

在有了过去30分钟股票价格的最高价和最低价,作者用这些数据绘制了一幅图片。蓝色是最高价,绿色是最低价。

如何计算价格之间的波动,常用的有两种方法:

一种是算数差:

一种是对数差:

作者选择的是对数差。

如果当前时间是t,那么作者使用t-30到t的最高价和最低价数据作为模型输入,预测t+5与t的价格对数差。

价格Pt 表示最高价和最低价的平均值。

作者选取L2范数作为损失函数训练模型。

结论:作者最后验证的结论是,使用他的模型预测股价还不如瞎猜。看到这里,我也是崩溃了!!!

虽然作者并没有得到一个好的结果,但这并不代表AI在股票预测方面是行不通的。只能说,路还很长。作者的思路还是比较新颖的,将图片识别与股票预测相结合,随着技术的积累与进步,不久的将来,很可能实现出直接看K线图炒股的机器人。作者在feature和预测目标的选取,已经模型训练方面给出了很多值得借鉴的经验,这也是这篇文章没有得到好的结论仍能发表的一个原因吧。

由于本人的英文能力和技术能力水平限制,可能会有理解不到位甚至不正确的情况,如有错误之处,敬请不吝赐教

作者:AI股神

链接:https://xueqiu.com/9414565199/69912985

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值