cnn输入层_CNN发展史

18a9bfacb976885b75417c44525c0ba9.png

CNN发展历史

下面简单叙述下的CNN的发展历史

1 LeNet:

广为流传LeNet诞生于1998年,网络结构比较完整,包括卷积层、pooling层、全连接层,这些都是现代CNN网络的基本组件。被认为是CNN的开端。

2 AlexNet:

2012年Geoffrey和他学生Alex在ImageNet的竞赛中,刷新了image classification的记录,一举奠定了deep learning 在计算机视觉中的地位。这次竞赛中Alex所用的结构就被称为作为AlexNet。

对比LeNet,AlexNet加入了:

(1)非线性激活函数:ReLU;

(2)防止过拟合的方法:Dropout,Data augmentation。同时,使用多个GPU,LRN归一化层。其主要的优势有:网络扩大(5个卷积层+3个全连接层+1个softmax层);解决过拟合问题(dropout,data augmentation,LRN);多GPU加速计算。

3 VGG-Net:

VGG-Net来自 Andrew Zisserman 教授的组 (Oxford),在2014年的 ILSVRC localization and classification 两个问题上分别取得了第一名和第二名,其不同于AlexNet的地方是:VGG-Net使用更多的层,通常有16-19层,而AlexNet只有8层。同时,VGG-Net的所有 convolutional layer 使用同样大小的 convolutional filter,大小为 3 x 3。

4 GoogLeNet:

提出的Inception结构是主要的创新点,这是(Network In Network)的结构,即原来的结点也是一个网络。其使用使得之后整个网络结构的宽度和深度都可扩大,能够带来2-3倍的性能提升。

5 Resnet

ResNet提出了一种减轻网络训练负担的残差学习框架,这种网络比以前使用过的网络本质上层次更深。其明确地将这层作为输入层相关的学习残差函数,而不是学习未知的函数。在ImageNet数据集用152 层(据说层数已经超过1000==)——比VGG网络深8倍的深度来评估残差网络,但它仍具有较低的复杂度。在2015年大规模视觉识别挑战赛分类任务中赢得了第一。

请参考以下几个经典解释

[原创]#Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet

【一图看懂】计算机视觉识别简史:从 AlexNet、ResNet 到 Mask RCNN?

深度学习(六)--CNN进化史 - antkillerfarm的专栏 - CSDN博客

CNN网络架构演进:从LeNet到DenseNet - Madcola - 博客园

CNN 那么多的网络有什么区别吗?看这里了解 CNN 的发展历程

了解CNN这一篇就够了:卷积神经网络技术及发展 -新闻频道-和讯网

深度学习之四大经典CNN技术浅析 | 硬创公开课

CNN结构演化进程-电子发烧友网

http://www.mamicode.com/info-detail-2275810.html

微信公众号:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值