rbf神经网络预测_LSTM项目实践(一)——预测印度卢比(INR)汇率趋势

本文探讨了利用时间序列分析预测印度卢比(INR)兑美元汇率,通过对比SVR、多层神经网络(ANN)和即将介绍的LSTM模型。在1980年至2017年的数据上,SVR和ANN显示出不同的预测效果,其中ANN表现出接近完美的拟合。然而,作者引用专家观点质疑长期预测汇率的准确性,认为价格数据并非完全随机,可能存在相关性。
摘要由CSDN通过智能技术生成

学习如何利用时间序列分析来预测未来的货币汇率变化趋势,并利用时间序列来进行预测。

我们希望用一个长短期记忆网络模型LSTM来讨论时间序列预测。但在此之前,我们先给出两种baseline方法,也即传统的SVR和多层神经网络ANN。其中,后者的效果已经非常好了。

数据集是基于1980年1月2日到2017年8月10日之间的汇率数据。数据集显示在印度卢比(INR)兑换1美元的值,总共有13730份记录。

ca33b8f9d0d69e468e35a62b85bb1e0d.png

链接:neelabhpant/Deep-Learning-in-Python

1. 读取数据集

读取USD_INR.csv文件,并绘制时序图

#1. 数据准备
df = pd.read_csv('USD_INR.csv')
df['Date'] = pd.to_datetime(df["Date"])
df_idx = df.set_index(["Date"], drop=True) # Data成为索引,而不是列
print(df_idx.head(5))

#顺序重排数据
df_idx = df_idx.sort_index(axis=1, ascending=True)
df_idx = df_idx.iloc[::-1]

#绘制数据的时序图
data = df_idx[['Price']]
data.plot(y='Price')
plt.show()

2. 数据预处理

包括训练、测试集划分,归一化数据。

训练数据是基于1980年1月2日到2009年12月31日之间的数据,大约有11000个训练数据点。测试数据集是在2010年1月1日到2017年8月10日之间,大约有2700个点。

78b126295b5f290105aea6ff3018e6c9.png
#2. 数据预处理

# 2.1 训练集和测试集划分
split_date = pd.Timestamp('01-01-2010')
trai
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值