关于Excel数据处理,很多同学可能使用过Pyhton的pandas模块,用它可以轻松地读取和转换Excel数据。但是实际中Excel表格结构可能比较杂乱,数据会分散不同的工作表中,而且在表格中分布很乱,这种情况下啊直接使用pandas就会非常吃力。本文虫虫给大家介绍使用pandas和openpyxl读取这样的数据的方法。

问题缘起
pandas read_excel函数在读取Excel工作表方面做得很好。但是,如果数据不是从头开始,不是从单元格A1开始的连续表格,则结果会不是很好。比如下面一个销售表,使用read_excel读取:

读取的结果如下所示:

结果中标题表头变成了Unnamed,而且还会额外增加很多职位NaN列,字段为空的列的值也会被转换为NaN,这显然不是我们所期望的。
header和usecols参数
对这样的非标准格式的表格,我们可以使用read_excel()的header和usecols参数来控制选择的需要读取的列。
impo

本文介绍了如何使用Pandas的read_excel函数配合header和usecols参数处理非标准格式的Excel数据,并展示了在数据更复杂时如何结合openpyxl库进行数据读取和转换,以适应各种Excel表格结构。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



