raft算法_深入浅出etcd之raft实现

导语

etcd是coreOS使用golang开发的分布式,一致性的kv存储系统,因其易用性和高可靠性被广泛运用于服务发现、消息发布和订阅、分布式锁和共享配置等方面,也被认为是zookeeper的强有力的竞争者。作为分布式kv,其底层使用raft算法实现多副本数据的强一致性。etcd作为raft开源实现的标杆,在设计上,将 raft 算法逻辑和持久化、网络、线程等完全抽离出来单独实现,充分解耦,在工程上,实现了诸多性能优化,是 raft 开源实践中较早的工业级的实现,很多后来的 raft 实践者都直接或者间接的参考了 ectd-raft 的设计和实现,例如kubernetes,tiDb等。其广泛的影响力和优雅的golang代码实践也使得ectd成为golang的明星项目。在我们实际的分布式存储系统的项目开发中,raft也被应用于元信息管理和数据存储等多个模块,因此熟悉和理解etcd-raft的实现具有重大意义,本文从raft的基本原理出发,深入浅出地分析了raft在ectd中的具体实现。

raft原理

架构

e13966fcc5d4a082a627ee0fa2cbb060.png

image

每个节点都包含状态机,日志模块和一致性模块。功能分别是:

  • 状态机:数据一致性指的即是状态机的一致性,从内部服务看表现为状态机中的数据都保持一致
  • log模块:保存了所有的操作记录
  • 一致性模块:一致性模块算法保证写入log命令的一致性,是raft的核心内容。

实现一致性的过程可分为Leader选举(Leader election)日志同步(Log replication),安全性(safty),日志压缩(Log compaction)成员变更(membership change)

leader 选举
竞选过程
  • 节点由Follower变为Candidate,同时设置当前Term。
  • Candidate给自己投票,带上termid 和日志序号,同时向其他节点发送拉票请求
  • 等待结果,成为Leader,follower 或者在选举未成为产生结果的情况下节点状态保持为Candidatae。
选举结果
  • 成功当选收到超过半数的选票时,成为Leader,定时给其他节点发送心跳,并带上任期id,其他节点发现当前的任期id小于接收到leader发送过来的id,则将将状态切换至follower.
  • 选举失败在Candidate状态接收到其他节点发送的心跳信息,且心跳中的任期id大于自己,则变为follower。
  • 未产生结果没有一个Candidate所获得的选票超过半数,未产生leader,则Candidate再进入下一轮投票。为了避免长期没有leader产生,raft采用如下策略避免:
  • 选举超时时间为随机值,第一个超时的节点带着最大的任期id立刻进入新一任的选举
  • 如果存在多个Candidate同时竞选的情况,发送拉票请求也是一段随机延时。

日志同步(Log Replication)

72a86319e9f86ee90f947bf6b3b41520.png

image

Leader选出后接受客户端请求,Leader把请求日志作为日志条目加入到日志中,然后向其他Follower节点复制日志,但超过半数的日志复制成功,则Leader将日志应用到状态机并向客户端返回执行结果,同时Follower也将结果提交。如果存在Follower没有成功复制日志,Leader会无限重试。

日志同步的关键点:

  • 日志由有序编号的日志条目组成,每条日志包含创建的任期和用于执行的命令,日志是保证所有节点数据一致的关键。
  • Leader 负责一致性检查,同时让所有的Follower都和自己保持一致。
  • 在Leader发生切换时,如何保证各节点日志一致。leader为每一个follower维护一个nextIndex,将index和termid信息发送至follower,从缺失的termid和index 为follow 补齐数据,直至和leader完全一致。
  • 只允许主节点提交包含当前term的日志。否则会出现已经commit的日志出现更改的情况

安全性

安全性的原则是一个term只有一个leader,被提交至状态机的数据不能发生更改。保证安全性主要通过限制leader的选举来保证:

  • Candidate在拉票时需要携带本地已持久化的最新的日志信息,如果投票节点发现本地的日志信息比Candidate更新,则拒绝投票。
  • 只允许Leader提交当前Term的日志。
  • 拥有最新的已提交的log entry的Follower才有资格成为Leader。

raft协议实现

raft的golang的开源实现主要包含两个:coreOS的raft实现 , 使用的项目如tidb和cockroachdb这两个经典的newsql。另外一个是hashicrop的raft实现,使用的项目如服务发现解决方案consul和时序数据库influxdb。对比二者的实现主要有如下特点:

  • hashicrop的实现完整度高,包含了snapshot,wal,storage等,在集成时只需要关注业务逻辑
  • etcd中的raft模块则是raft协议的轻量级实现,对于上述功能只定义了相关interface,需要业务方去具体实现,优点是增加灵活性,etcdserver就是集成raft算法并实现snapshot,wal,storage这样一个应用程序。

etcd/raft 代码结构

  • 日志持久化storage.go:持久化日志保存模块,以interface的方式定义了实现的方式,并基于内存实现了memoryStorage用于存储日志数据。log.go:raft算法日志模块的逻辑log_unstable.go:raft 算法的日志缓存,日志优先写缓存,待状态稳定后进行持久化
  • 节点node.go: raft集群节点行为的实现,定义了各节点通信方式process.go:从leader的角度,为每个follower维护一个子状态机,根据状态的切换决定leader该发什么消息给Follower.
  • Raft算法raft.go:raft算法的具体逻辑实现,每个节点都有一个raft实例read_only.go: 实现了线性一致读(linearizable read),线性一致读要求读请求读到最新提交的数据。针对raft存在的stale read(多leader场景),此模块通过ReadIndex的方式保证了一致性。

etcd/raft的实现分析

分析raft的实现流程,我们可以从raft的几个核心问题入手:

  • 如何选举leader?
  • 如何实现log的复制?
  • 如何进行leadership的transfer?
  • 如何实现线性一致读?

其中leader的选举、log复制和线性一致读是raft协议的最基本要求,而leadership的转移在工程实践中有重大意义。

核心数据结构
  • struct node node 中主要定义一系列channel,raft的实现就是通过channel 传递消息,当节点启动通过select机制监听上述channel确定相应的状态切换。
// node is the canonical implementation of the Node interfacetype node struct {propc      chan msgWithResultrecvc      chan pb.Messageconfc      chan pb.ConfChangeconfstatec chan pb.ConfStatereadyc     chan Readyadvancec   chan struct{}tickc      chan struct{}done       chan struct{}stop       chan struct{}status     chan chan Statuslogger Logger}
  • interface node定义了node要实现raft算法必须实现的方法
type Node interface {Tick() //时钟的实现,选举超时和心跳超时基于此实现Campaign(ctx context.Context) error //参与leader竞争Propose(ctx context.Context, data []byte) error //在日志中追加数据,需要实现方保证数据追加的成功ProposeConfChange(ctx context.Context, cc pb.ConfChange) error // 集群配置变更Step(ctx context.Context, msg pb.Message) error //根据消息变更状态机的状态//标志某一状态的完成,收到状态变化的节点必须提交变更Ready() 
节点的启动和运行

节点初始化raft,读取配置启动各个各个节点,初始化logindex.启动后 以for-loop方式循环运行,用select 机制监听不同的channel 实现对状态变化的监听,并执行相应动作。

//启动func StartNode(c *Config, peers []Peer) Node {r := newRaft(c) //初始化raft算法实例r.becomeFollower(1, None)//将配置中的节点加入集群for _, peer := range peers {...}//初始化logindexr.raftLog.committed = r.raftLog.lastIndex()for _, peer := range peers {//初始化节点状态机(progress)r.addNode(peer.ID)}n := newNode()n.logger = c.Loggergo n.run(r)return &n}//运行func (n *node) run(r *raft) {...select {//接收到写消息case pm := 
leader 选举

初始化node为follower,设置任期为1,并初始化tickElection函数,这是实际参与选举的函数,同时也初始化step为stepFollower,这是作为follower的核心信息处理函数,后续选举,日志复制和快照等功能都基于此函数进行:

r := newRaft(c)r.becomeFollower(1, None)

当节点接收leader的heartbeat超时时(每个节点都有随机的超时时间),会触发run函数中的tickc这个channel。发送MsgHup消息,并调用campaign参选, 将自身设置为candidate,并递增currentTerm,向其他节点发送竞选消息。其他节点通过监听propc channel获取其他节点发送的投票消息,并调用Step对消息进行判断,选择是否投票。

其中投票的判断逻辑主要分两步:1.如果投票信息中的任期id 是否 小于自身的id,则直接返回nil。2.通过isUpToDate判断能否投票,通过和本地已存在的最新log比较,首先要有最大任期id,如果任期id相同则要求有最大的logindex。

candidate节点收到其他节点的回复后,判断获取的票数是否超过半数,如果是则设置自身为leader,否则为follower。

func (n *node) run(r *raft) {    ...    for {        select {            ...            //触发heartbeat 超时            case = r.randomizedElectionTimeout}func (r *raft) resetRandomizedElectionTimeout() {r.randomizedElectionTimeout = r.electionTimeout + globalRand.Intn(r.electionTimeout)}//参与选举func (r *raft) campaign(t CampaignType) {var term uint64var voteMsg pb.MessageType//成为candicate,将任期id加1if t == campaignPreElection {r.becomePreCandidate()voteMsg = pb.MsgPreVoteterm = r.Term + 1} else {r.becomeCandidate()voteMsg = pb.MsgVoteterm = r.Term}//判断获取的票数是否超过半数,如果是当选为leaderif r.quorum() == r.poll(r.id, voteRespMsgType(voteMsg), true) {if t == campaignPreElection {r.campaign(campaignElection)} else {r.becomeLeader()}return}//向其他节点发送竞选消息for id := range r.prs {if id == r.id {continue}var ctx []byteif t == campaignTransfer {ctx = []byte(t)}r.send(pb.Message{Term: term, To: id, Type: voteMsg, Index: r.raftLog.lastIndex(), LogTerm: r.raftLog.lastTerm(), Context: ctx})}}//节点投票过程func (r *raft) Step(m pb.Message) error {...//比较任期idcase m.Term > r.Term:if m.Type == pb.MsgVote || m.Type == pb.MsgPreVote {force := bytes.Equal(m.Context, []byte(campaignTransfer))inLease := r.checkQuorum && r.lead != None && r.electionElapsed < r.electionTimeoutif !force && inLease {return nil}}switch m.Type {case pb.MsgVote, pb.MsgPreVote:...//与本地最新的持久化日志比较if canVote && r.raftLog.isUpToDate(m.Index, m.LogTerm) {//发送投票信息r.send(pb.Message{To: m.From, Term: m.Term, Type: voteRespMsgType(m.Type)})if m.Type == pb.MsgVote {// Only record real votes.r.electionElapsed = 0r.Vote = m.From}} ...return nil}func (l *raftLog) isUpToDate(lasti, term uint64) bool {return term > l.lastTerm() || (term == l.lastTerm() && lasti >= l.lastIndex())}//投票结果判断case myVoteRespType:gr := r.poll(m.From, m.Type, !m.Reject)//计算票数是否超过半数switch r.quorum() {case gr:if r.state == StatePreCandidate {r.campaign(campaignElection)} else {r.becomeLeader()r.bcastAppend()}case len(r.votes) - gr:r.becomeFollower(r.Term, None)}
日志复制

node节点为外界提供了日志提交接口 Propose,在ectd的server对该接口进行了封装。Propose 内部具体调用stepWithWaitOption实现日志消息的传递,并阻塞/非阻塞地等待结果的返回。

func (n *node) Propose(ctx context.Context, data []byte) error {return n.stepWait(ctx, pb.Message{Type: pb.MsgProp, Entries: []pb.Entry{{Data: data}}})}func (n *node) stepWithWaitOption(ctx context.Context, m pb.Message, wait bool) error {    ...//提交日志数据至 node的 propc channel 队列select {case ch 

proc消息进入stepFollower处理,因为只有leader才能处理客户端提交的信息,因此将消息的接收者设置为leader后转发。在stepLeader中调用appendEntry将消息追到leader的raftLog之中,但不进行数据的commit。之后调用bcastAppend 将消息广播至其他follower节点。

func stepLeader(r *raft, m pb.Message) error {case pb.MsgProp:...if !r.appendEntry(m.Entries...) {return ErrProposalDropped}r.bcastAppend()...}

follower节点接收到请求后,调用handleAppendEntries判断是否接受leader提交的日志。判断逻辑如下:如果leader提交的logindex小于本地已经提交的logindex则将本地的logindex回复给leader。查找追加的日志和本地log的冲突,如果有冲突,则先找到冲突的位置,用leader的日志从冲突位置开始进行覆盖,日志追加成功后,返回最新的logindex至leader。如何任期信息不一致,则直接拒绝leader的追加请求。

func (r *raft) handleAppendEntries(m pb.Message) {    //leader提交的logindex小于本地已经提交的logindexif m.Index < r.raftLog.committed {r.send(pb.Message{To: m.From, Type: pb.MsgAppResp, Index: r.raftLog.committed})return}//追加日志,可能存在冲突的情况,需要找到冲突的位置用leader的日志进行覆盖if mlastIndex, ok := r.raftLog.maybeAppend(m.Index, m.LogTerm, m.Commit, m.Entries...); ok {    //mlastIndex表示最佳成功的最新位置r.send(pb.Message{To: m.From, Type: pb.MsgAppResp, Index: mlastIndex})} else {    //任期信息不一致,拒绝此次追加请求,并把最新的logindex回复给leader,便于进行追加r.send(pb.Message{To: m.From, Type: pb.MsgAppResp, Index: m.Index, Reject: true, RejectHint: r.raftLog.lastIndex()})}}

leader接收到follower的请求后,针对拒绝和接收的两个场景有不同的处理逻辑,这也是保证follower一致性的关键环节

  • follower 正常接收append请求 当leader 确认follower已经接收了append请求后,则调用maybeCommit进行提交,在提交过程中确认各个节点的matchindex,排序后取中间值比较,如果中间值都都比本地的commitindex大,就认为超过半数已经认可此次提交,可以进行commit,之后调用sendAppend向所有节点广播消息,follower接收到请求后调用maybeAppend进行日志的提交。值得注意的是,日志的append过程可能由于之前的请求被拒绝,等待snapshot或者消息发送窗口(inflight)已满导致中止,这时需要重新向follower节点发送最新的append请求。
   func stepLeader(r *raft, m pb.Message) error {    case pb.MsgAppResp:    pr.RecentActive = true    if m.Reject {...} else {oldPaused := pr.IsPaused()//更新索引信息,更新该follower的match index 和next index.if pr.maybeUpdate(m.Index) {switch {//日志追加成功,状态由复制探测状态变成复制状态,加快日志的追加case pr.State == ProgressStateProbe:pr.becomeReplicate()case pr.State == ProgressStateSnapshot && pr.needSnapshotAbort():r.logger.Debugf("%x snapshot aborted, resumed sending replication messages to %x [%s]", r.id, m.From, pr)pr.becomeProbe()//pr.ins用于限制消息发送的速率,用于统计当前处于发送状态的日志数量case pr.State == ProgressStateReplicate:pr.ins.freeTo(m.Index)}//leader进行本地的提交if r.maybeCommit() {//广播至所有follower 通知进行log的提交r.bcastAppend()} else if oldPaused {//append请求被中止,则重新发送最新的请求r.sendAppend(m.From)}}}}    }        func (r *raft) maybeCommit() bool {if cap(r.matchBuf) < len(r.prs) {r.matchBuf = make(uint64Slice, len(r.prs))}mis := r.matchBuf[:len(r.prs)]idx := 0for _, p := range r.prs {mis[idx] = p.Matchidx++}//排序取取中间值sort.Sort(mis)mci := mis[len(mis)-r.quorum()]return r.raftLog.maybeCommit(mci, r.Term)}func (l *raftLog) maybeCommit(maxIndex, term uint64) bool {//match的中间值是否已经大于本地已经commit的matchindexif maxIndex > l.committed && l.zeroTermOnErrCompacted(l.term(maxIndex)) == term {l.commitTo(maxIndex)return true}return false}
  • follower拒绝leader的append请求 在异常情况下,follower会拒绝leader的append请求。其判断逻辑主要位于matchTerm,当leader append请求中的logindex在当前节点已提交的日志中到不到对应的任期,或者任期与leader提交的任期不一致时follower会拒绝当前append请求。leader接收到拒绝请求后会进入探测状态,探测follower最新匹配的位置。
   //follower接收leader的请求   func (l *raftLog) maybeAppend(index, logTerm, committed uint64, ents ...pb.Entry) (lastnewi uint64, ok bool) {       if l.matchTerm(index, logTerm) {       ...       }       //拒绝leader当前的append请求       return 0, false    }   //对leader提交append请求中的logindex和termid进行判断   func (l *raftLog) matchTerm(i, term uint64) bool {       t, err := l.term(i)       if err != nil {       return false       }       return t == term    }        func stepLeader(r *raft, m pb.Message) error {       case pb.MsgAppResp:       pr.RecentActive = true          if m.Reject {       if pr.maybeDecrTo(m.Index, m.RejectHint) {       //由复制状态进入探测状态,探测follower最新的匹配位置       if pr.State == ProgressStateReplicate {       pr.becomeProbe()       }       r.sendAppend(m.From)       }    }

下面来分析leader接收到拒绝请求后的处理逻辑。由于各种原因可能导致follower节点的日志与leader不一致,如下图所示:

0e76f0eb045a8c25a971afc70751c491.png

日志同步

在raft的论文中提出通过遍历index和term的方式保证日志的一致性。具体的实现位于maybeDecrTo,因为follower在拒绝请求时带上了当前最新的logindex,因此在进行日志补推时,直接将next至为follower中最新的logindex 和当前index中的最小值。

func (pr *Progress) maybeDecrTo(rejected, last uint64) bool {       if pr.State == ProgressStateReplicate {       if rejected <= pr.Match {       return false       }       // directly decrease next to match + 1       //复制状态将pr的next置为当前匹配位置+1       pr.Next = pr.Match + 1       return true       }          if pr.Next-1 != rejected {       return false       }       //如果是探测状态,则将next置为follower中最新的logindex  和当前index中的最小值。       if pr.Next = min(rejected, last+1); pr.Next < 1 {       pr.Next = 1       }       pr.resume()       return true    }      日志推送的具体实现位于maybeSendAppend.func (r *raft) maybeSendAppend(to uint64, sendIfEmpty bool) bool {pr := r.getProgress(to)if pr.IsPaused() {return false}m := pb.Message{}m.To = to//发送给follower的最后一条日志对应的任期term, errt := r.raftLog.term(pr.Next - 1)//需要发送给follower的日志条数ents, erre := r.raftLog.entries(pr.Next, r.maxMsgSize)if len(ents) == 0 && !sendIfEmpty {return false}if errt != nil || erre != nil { // send snapshot if we failed to get term or entries...} else {m.Type = pb.MsgAppm.Index = pr.Next - 1m.LogTerm = termm.Entries = ents//leader 已经提交的最新indexm.Commit = r.raftLog.committedif n := len(m.Entries); n != 0 {switch pr.State {//在日志复制状态,乐观地增加next, 加快日志的推送速度case ProgressStateReplicate:last := m.Entries[n-1].Indexpr.optimisticUpdate(last)pr.ins.add(last)case ProgressStateProbe:pr.pause()default:r.logger.Panicf("%x is sending append in unhandled state %s", r.id, pr.State)}}}r.send(m)return true}

至此raft集群的日志复制基本已经完成,但是仅限于raft协议层面,日志和快照目前还是保存在Ready结构中,并放入了readyc队列,等待上游的模块处理。之前提到过etcd-raft 只是协议层的实现,提供了WAL,snapshot和storage等模块的扩展接口,应用层需要实现上述接口最终实现的数据的落地。

func newReady(r *raft, prevSoftSt *SoftState, prevHardSt pb.HardState) Ready {...//日志数据rd := Ready{Entries:          r.raftLog.unstableEntries(),CommittedEntries: r.raftLog.nextEnts(),Messages:         r.msgs,}...}
leadership transfer

leadership transfer 指的是leader身份的转换,raft提供接口允许客户端进行leader切换,此功能可用来做负载均衡,让客户端有机会结合实际的机器和负载情况去选择最优的leader;同时也是multi-raft实现的基础。下面具体分析transfer的实现。

raft协议提供了transferLeaderShip方法供应用层使用用于触发leader的转换,transferLeaderShip会发送MsgTransferLeader类型消息至recvc消息队列中(channel)。当follower收到TransferLeader消息后不处理将消息转发至leader进行处理。

 //etcd/raft/raft.go func (n *node) TransferLeadership(ctx context.Context, lead, transferee uint64) {    select {    //通过recvc发送MsgTransferLeader消息至集群中节点    case n.recvc 

leader收到transfer消息后,如果发现当前正在进行leader切换或者不发生leader变换则直接放弃。一个节点要成为leader的要求是有最新的日志数据。如果有则立即发送MsgTimeoutNow消息,transfee收到消息后立即调用campaign方法进行选择,而不是像正常leader选举时需要等待超时,而且也不需要采用预投票的方式,之后的选举流程与正常选举过程一致。如果transfee没有最新的日志数据,则leader进行日志的同步,当同步完成收到回复且正处在leader transfer的过程中,发送MsgTimeoutNow,之后与上述流程一致。

 //etcd/raft/raft.go func stepLeader(r *raft, m pb.Message) error {switch m.Type {...case pb.MsgTransferLeader:if pr.IsLearner {r.logger.Debugf("%x is learner. Ignored transferring leadership", r.id)return nil}leadTransferee := m.FromlastLeadTransferee := r.leadTransferee//上一次transfer正在进行if lastLeadTransferee != None {if lastLeadTransferee == leadTransferee {r.logger.Infof("%x [term %d] transfer leadership to %x is in progress, ignores request to same node %x",r.id, r.Term, leadTransferee, leadTransferee)return nil}r.abortLeaderTransfer()r.logger.Infof("%x [term %d] abort previous transferring leadership to %x", r.id, r.Term, lastLeadTransferee)}//transfee和当前leader相同if leadTransferee == r.id {r.logger.Debugf("%x is already leader. Ignored transferring leadership to self", r.id)return nil}// Transfer leadership to third party.// Transfer leadership should be finished in one electionTimeout, so reset r.electionElapsed.r.electionElapsed = 0r.leadTransferee = leadTransfereeif pr.Match == r.raftLog.lastIndex() {//transfee的日志已经是最新和leader保持一致了,则立刻发送MsgTimeoutNow,触发选举r.sendTimeoutNow(leadTransferee)r.logger.Infof("%x sends MsgTimeoutNow to %x immediately as %x already has up-to-date log", r.id, leadTransferee, leadTransferee)} else {//日志非最新进行日志的同步r.sendAppend(leadTransferee)}}return nil}
线性一致读

线性一致性读是分布式系统的基本要求,在raft中leader和follower都可以接受读请求,但在以下场景下可能出现数据的不一致:

  • Leader和Follower复制期间的状态不一致
  • 因为网络分区导致多个leader的存在,不同leader间的状态不一致,即脑裂(split-brain)现象。如果请求分别被新旧leader处理,所得的结果也不一致

为解决raft的线性一致读问题,etcd-raft提供了两种实现方案:

  • ReadIndex(ReadOnlySafe)。其原理是接收到客户端请求后,向集群发起ReadIndex请求来读取commitedIndex,Leader收到请求后向节点发送心跳,当收到大多数节点的确认自己仍是leader后,回复ReadIndex请求并告知最新的commitedIndex。ReadIndex是etcd-raft的默认方案。
  • Lease read方案(ReadOnlyLeaseBased)。其原理是通过维护leader的租期,确认leader的唯一性,不需要通过心跳来进行leader的确认。其风险在于需要全局一直的时钟来保证lease机制的准确性。etcd-raft不推荐采用此方案,pingcap开源的分布式数据库tidb中的pd 模块在实现TSO(Timestamp Oracle)的前提下,采用此方案。
ReadIndex实现分析

在raft初始化的过程中完成了linearizable read的配置,包括需要采用的方案。

   func newRaft(c *Config) *raft {   ...   }   r := &raft{   id:                        c.ID,   ...   //初始化readOnly配置   readOnly:                  newReadOnly(c.ReadOnlyOption),   disableProposalForwarding: c.DisableProposalForwarding,   }   }      const (   //ReadIndex方案   ReadOnlySafe ReadOnlyOption = iota   //leaseRead方案   ReadOnlyLeaseBased   )

阻塞的recvc channel收到ReadIndex请求后,将请求加入队列,初始化ReadIndex状态。之后发送广播心跳。

   func stepLeader(r *raft, m pb.Message) error {   switch m.Type {   ...   case pb.MsgReadIndex:   switch r.readOnly.option {   case ReadOnlySafe:   //加入请求队列   r.readOnly.addRequest(r.raftLog.committed, m)   //广播心跳消息   r.bcastHeartbeatWithCtx(m.Entries[0].Data)   }   } else {   r.readStates = append(r.readStates, ReadState{Index: r.raftLog.committed, RequestCtx: m.Entries[0].Data})   }   }   }      func (ro *readOnly) addRequest(index uint64, m pb.Message) {   ctx := string(m.Entries[0].Data)   if _, ok := ro.pendingReadIndex[ctx]; ok {   return   }   //index是当前集群的committedIndex,acks 用来收集节点心跳回复包   ro.pendingReadIndex[ctx] = &readIndexStatus{index: index, req: m, acks: make(map[uint64]struct{})}   ro.readIndexQueue = append(ro.readIndexQueue, ctx)   }

当leader收到心跳回复后,对心跳进行统计,如果是本地请求直接将消息追加到readstatus中,最终会由newReady函数将消息发送到readyc channel,监听ready channel的客户端会最终回复请求。

   func stepLeader(r *raft, m pb.Message) error {   case pb.MsgHeartbeatResp:   ...   }   //统计回复结果,如果未超过半数则直接返回   ackCount := r.readOnly.recvAck(m)   if ackCount < r.quorum() {   return nil   }      rss := r.readOnly.advance(m)   for _, rs := range rss {   req := rs.req   //如果是本地的请求   if req.From == None || req.From == r.id { // from local member   r.readStates = append(r.readStates, ReadState{Index: rs.index, RequestCtx: req.Entries[0].Data})   } else {   //如果是来自follower的请求,将结果返回给follower   r.send(pb.Message{To: req.From, Type: pb.MsgReadIndexResp, Index: rs.index, Entries: req.Entries})   }   }   }      func newReady(r *raft, prevSoftSt *SoftState, prevHardSt pb.HardState) Ready {   rd := Ready{   Entries:          r.raftLog.unstableEntries(),   CommittedEntries: r.raftLog.nextEnts(),   Messages:         r.msgs,   }   ...   //readIndex消息追加   if len(r.readStates) != 0 {   rd.ReadStates = r.readStates   }   rd.MustSync = MustSync(r.hardState(), prevHardSt, len(rd.Entries))   return rd   }      func (n *node) run(r *raft) {   ....   for {   if advancec != nil {   readyc = nil   } else {   //消息加入readyc队列   rd = newReady(r, prevSoftSt, prevHardSt)   if rd.containsUpdates() {   readyc = n.readyc   } else {   readyc = nil   }   }   ....   }

如果是follower接收到ReadIndex请求,直接将消息转发至leader,leader按上述流程处理,follower接收到消息后采用上述类似机制加入readyc队列,异步回复客户端。

   func stepFollower(r *raft, m pb.Message) error {   ...   case pb.MsgReadIndex:   if r.lead == None {   r.logger.Infof("%x no leader at term %d; dropping index reading msg", r.id, r.Term)   return nil   }   //将ReadIndex请求转发给leader   m.To = r.lead   r.send(m)   case pb.MsgReadIndexResp:   if len(m.Entries) != 1 {   r.logger.Errorf("%x invalid format of MsgReadIndexResp from %x, entries count: %d", r.id, m.From, len(m.Entries))   return nil   }   //收到leader回复后将消息加入readStatus   r.readStates = append(r.readStates, ReadState{Index: m.Index, RequestCtx: m.Entries[0].Data})   ...   }

总结

本文从raft算法的基本原理出发,简单的分析了leader选举和日志复制的实现过程。之后从工程实践的角度出发分析了etcd-raft的代码实现,重点剖析了leader选举,日志复制,leadership transfer和线性一致读的核心流程。而raft算法博大精深,etcd也是工业级的完整实现,除了本文介绍的几个核心环节外,leader的预选举(prevote)、节点成员变更、配置变更和日志的批量追加等也是raft的关键环节,因篇幅所限就不再一一介绍。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值