c++ 多重背包状态转移方程_时间序列基础——差分方程和求解

(一)高阶差分方程的解:

高阶差分齐次方程:

891be09587adecce435ea661fb924975.png


1)仍然可得

e980843e80fe9d4fa111ca124770935a.png

是该齐次方程的解
2)得到对应的特征方程(其实以后我们可以直接写出相应的特征方程,参考高数中写微分方程的特征方程)

015a308330ae4b74f31eadff46a3bf2f.png

n阶多项式有n个根,记这n个特征根分别为

可以为实数或复数。复数根则成对出现,相互共轭。

稳定性条件要求除了为1的单特征根(对应常数解),其它特征根的绝对值都小于1或在单位圆之内;否则解将发散。

将有n个特征根(相异实数根,多重根,共轭复根)

(1)相异实根:

e26558d57afb921b9fb3f6d4379d6fcd.png

(2)实根,m重根:

1352095a297b3c5c189532af23c20758.png


这里只是举一个例子,太复杂的并没有阐述,即:

都相等吗,但
都是相异实根。(其实还是不够一般化)(注意,最后那个因为相等所以
改写为了
)(而且他没把剩下的相异实根 部分写上去,容易引起误解)

所以上面这个表述是有歧义的。因为假如重根有5个,分别为
。但是他们的重数可能是不同的,比如重数分别为2,2,3,4,5.所以他们的上面这个表述是有问题的。

应该改为:

f77ab68c7759c3e2b67406910c88ab6c.png


这里的n替换为t,这里仅是假设

为k重,而其余的k+1到N个根都是相异实根。

那么其余的怎么写,就了然了。

看两个例子:

7a62853b030882017d29caaa4192267b.png

b93cebdc4f5a7a5c6ddbb538c287ded3.png

(3)复根

6cb01483dadccce65cff688822cbb4be.png


复根出现重根的情况不再给出了
(二)稳定性条件

e7cd3c813326c5a267ed655785fb0eab.png


要得到上述结论,需要先证明下式:

135958b6f8a0862b7cf06fd712bb9730.png


然后再由此式即可推导出上述结论。

(三)非齐次特解

非齐次差分方程的形式和推动过程x(t)有关

即推动过程为确定性过程

下面几种为讨论推动过程包含常数项,时间趋势项t的情形

(1)

(高阶差分方程)

此时的方程为:

9433cd1e8c6d4f50dfba334a0d0cdf65.png


则猜想解的形式为:

46794fd46d39c80eefbad10b708c2627.png


代入方程,解出c的值为:

6463f52330630605a8191b77c6f86853.png


但是分母

2bf610379a187af0393ba3e42c8322e8.png

可能为0,那么c就不存在了。
此时,我们应猜想解的形式为:

6121b3801ef0f814c0bb4b211fa4f03e.png


代入方程,解出c的值为:

e2e9c3253e6c687989d6d752b8ae2707.png


若分母

c7af2ab4e479ce1711e31bb77be17ba7.png

可能为0,那么c就不存在了。
继续尝试

67afefd07aedda49b378a0d8c0a1938a.png

这样形式的解,知道找到为止,总能找到的。

(2)

,其中b,d,r都是常数(仅指出了一阶)

此时的方程为:

11850a5ccef93d053d1cb7daaf026810.png


我们仅考虑一阶:

0ad3b757245476a739c9faac2e155f26.png


猜想解的形式为:

9206fa198424f9ed8b04de9152e1ff6d.png


代入方程,接触

b38b5063e9918cbbef55a46d7957cc9e.png


于是,得到一个特解为:

44aafda47f89834eb7ca20bc841c2644.png


只要

,该解就收敛

412b03d25ca935587af8b2d01aa6c2ba.png


即:1、

(常数项乘以了t)

2、

, 每一项都乘以了t.

对于高阶方程,仍然可以使用此方法(不过猜想的第一个解需要一定的智慧)

(3)

,其中b为常数,d为正常数。

此时的方程为:

8ea8455a56d5c7e1b6a2321f0ef0b9d4.png


猜想其特解的一般形式为:

5f4ce51567a82722e9c143e3e086506c.png


举一个二阶差分方程的例子:
方程形式为:

358b50cb51de4b8273e15810db9331e3.png

(此时d=1)
猜想其特解的一般形式为:

e229db26816d07f35fec4eed91c1995f.png


代入可能到两个系数为:

79bdfa53cca52e97fb1f27edb0bb8fe5.png


同样考虑

7a23be0df6210908b1459e71877d666a.png

,则令此时的特解形式为:

6f21f7461e5ffa3e9e0096bfb9d86dfa.png


(四)待定系数法

(待定系数法在微分方程中也常用,先猜一个挑战解,假定其满足,然后代入,最终去求出这些系数,如果系数有解,则这个挑战解就是方程的解,如果系数无解,则这个挑战解就不是方程的解)

即推动过程是随机干扰项的非齐次方程的特解
待定系数法可能误解,所以我们将一开始提出的用于尝试的解称之为挑战解

(1)简单情形1:一阶差分方程+一个随机干扰项方程为

cb99b7fabaf401fe2f3c3bfb55e98ab0.png


猜想的挑战解形式为:

f9ee3f3d0f205246ac2ab0112b7a7b2e.png


代入方程得

a9f846aa997da3e14ee8f8ac1b641580.png


对任意的t和efshow,上述的式子都要成立,那就只能让常数项和系数都为零啦~
于是可以得到:

8feeb7f21a1353db6feb0cd329a224b2.png


e14ee13cf6029c540439539264cd6d39.png


考虑到分母,还是分类讨论:

分类情形1:

cc76fb17084ff33cea92789a0d3e6142.png


这个结果和第一部分中使用向前迭代解本方程对所得的解的结果完全一致
最后我们可以配上对应的齐次方程的通解,组合成非齐次方程的通解,如下:

6cb70ed826f7ea4c4612c4c45980eef0.png


分类情形2:

2515b41d01db4e1a761936d377ff60f6.png


由于efshow的求和未必有限,所以该解可能发散。于是施加如下初始条件:

ae2d40250697ef6765dc79a14628c090.png


最终将特解写为:

547a14f51d6a86eb025349457ab0e6bc.png


但是我觉得,由于t的存在,这个解还是发散的,所以前面施加初始条件然并卵。
(2)简单情形2:一阶差分方程+两个随机干扰项
方程为:

ebd7c908866617df9986084f2d24576f.png


猜想的挑战解形式为:

609d03af912ecec802149a8c4bbc8df5.png


使用(1)简单情形1中的步骤和方法,不再赘述。
(3)二阶差分方程+一个随机干扰项 ,方程为:

9f25871ad7ddf470bfba0b9847fe35b1.png


猜想的挑战解形式为:

90c3d0a0fc001467486600e36d54d4ff.png


代入方程可以得到:

085d18a64bcf9cf02d11a55891cf86b2.png


a50a068245f09997235fbe70180e0aed.png


08c54cd935fd1f02a81b2a5b434839c8.png

(可以解出a(j))

553ba0ee85c4ec81e3ec6538cccd18f4.png


(五)滞后算子


滞后算子L:

282e37fd241b0d4a9b8c0b0a721daf83.png


滞后算子的性质:

03e9b7e7c2ae13dc6be3ff5701a9eadf.png

4274692422fa80a3f7a96c1c0b6303ca.png

435e929fab2d097c5a685b5efc71cbc5.png


利用性质5和性质6,结合性质1,就可以解出差分方程。(级数求和与展开)
如果是高阶,则可以因式分解,拆分后,再进行级数展开。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值