正弦定理和余弦定理_运用两次余弦定理+一次面积公式才能解决的这道题,你想到了吗?...

32e5bd2ef5481b3d7cb9e67c686b3a1e.png

我们都知道,学习了正余弦定理后,感觉正弦的运用要明显比余下定理的要简单,但是正弦定理又无法帮助我们解决所有的求边长,角度,面积等问题,所以有时候不得已一定要用到余弦定理,之所以觉得余弦定理难,从公式上就可以给我们这样的感受,又有边长,又有平方,又有角度等,如果不是不得已的情况下,谁都不想用啦,但是从高考考察的情况来看,余弦定理要比正弦定理更重要一些,所以大家在课后的练习一定要克服这种心理,仔细分析题干的条件,然后再看是用正弦定理还是用余弦定理解决。今天继续跟大家分享的是一道关于余弦定理+三角形面积公式运用的题目,计算量中等,但是要求学生对公式的运用要非常熟练,下面同学们可以自己来尝试一下.

【典型例题】

已知圆的内接四边形ABCD的边长分别是AB=2,BC=6,CD=DA=4,求四边形ABCD的面积。

00a3759be56cb89e5830b2700b7756e1.png

解析过程:先连接对角线BD,那么可以得到四边形ABCD的面积S=S△ABD+S△CDB=1/2AD*ABsinA+1/2BC*CD*sinC

因为A+C=180°,所以sinA=sinC

所以S=1/2(AB*AD+BC*CD)sinA=1/2(2*4+6*4)sinA=16sinA

由余弦定理,在△ABD中,

BD2=AB2+AD2-2AB*ADcosA

在△CDB中,BD2=CB2+CD2-2CB*CDcosC=62+42-2*6*4cosC=52-48cosC

所以20-16cosA=52-48cosC

因为cosC=-cosA

所以64cosA=-32,cosA=-1/2

所以A=120°

所以S=16sin120°=8倍根号3

所以答案为8倍根号3。

那今天的分享就到此结束了,明天我们继续。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值