
我们都知道,学习了正余弦定理后,感觉正弦的运用要明显比余下定理的要简单,但是正弦定理又无法帮助我们解决所有的求边长,角度,面积等问题,所以有时候不得已一定要用到余弦定理,之所以觉得余弦定理难,从公式上就可以给我们这样的感受,又有边长,又有平方,又有角度等,如果不是不得已的情况下,谁都不想用啦,但是从高考考察的情况来看,余弦定理要比正弦定理更重要一些,所以大家在课后的练习一定要克服这种心理,仔细分析题干的条件,然后再看是用正弦定理还是用余弦定理解决。今天继续跟大家分享的是一道关于余弦定理+三角形面积公式运用的题目,计算量中等,但是要求学生对公式的运用要非常熟练,下面同学们可以自己来尝试一下.
【典型例题】
已知圆的内接四边形ABCD的边长分别是AB=2,BC=6,CD=DA=4,求四边形ABCD的面积。

解析过程:先连接对角线BD,那么可以得到四边形ABCD的面积S=S△ABD+S△CDB=1/2AD*ABsinA+1/2BC*CD*sinC
因为A+C=180°,所以sinA=sinC
所以S=1/2(AB*AD+BC*CD)sinA=1/2(2*4+6*4)sinA=16sinA
由余弦定理,在△ABD中,
BD2=AB2+AD2-2AB*ADcosA
在△CDB中,BD2=CB2+CD2-2CB*CDcosC=62+42-2*6*4cosC=52-48cosC
所以20-16cosA=52-48cosC
因为cosC=-cosA
所以64cosA=-32,cosA=-1/2
所以A=120°
所以S=16sin120°=8倍根号3
所以答案为8倍根号3。
那今天的分享就到此结束了,明天我们继续。