python算法学习代码_干货|小姐姐带你一起学:如何用Python实现7种机器学习算法(附代码)...

编译 | 林椿眄

出品 | AI科技大本营(公众号ID:rgznai100)

导读:Python 被称为是最接近 AI 的语言。最近一位名叫Anna-Lena Popkes的小姐姐在GitHub上分享了自己如何使用Python(3.6及以上版本)实现7种机器学习算法的笔记,并附有完整代码。所有这些算法的实现都没有使用其他机器学习库。这份笔记可以帮大家对算法以及其底层结构有个基本的了解,但并不是提供最有效的实现。

小姐姐史是德国波恩大学计算机科学专业的研究生,主要关注机器学习和神经网络。

七种算法包括:

线性回归算法

Logistic 回归算法

感知器

K 最近邻算法

K 均值聚类算法

含单隐层的神经网络

多项式的 Logistic 回归算法

▌1. 线性回归算法

在线性回归中,我们想要建立一个模型,来拟合一个因变量 y 与一个或多个独立自变量(预测变量) x 之间的关系。

给定:

数据集

是d-维向量

是一个目标变量,它是一个标量

线性回归模型可以理解为一个非常简单的神经网络:

它有一个实值加权向量

它有一个实值偏置量 b

它使用恒等函数作为其激活函数

线性回归模型可以使用以下方法进行训练

a) 梯度下降法

b) 正态方程(封闭形式解):

其中 X 是一个矩阵,其形式为

,包含所有训练样本的维度信息。

而正态方程需要计算

的转置。这个操作的计算复杂度介于

)和

之间,而这取决于所选择的实现方法。因此,如果训练集中数据的特征数量很大,那么使用正态方程训练的过程将变得非常缓慢。

线性回归模型的训练过程有不同的步骤。首先(在步骤 0 中),模型的参数将被初始化。在达到指定训练次数或参数收敛前,重复以下其他步骤。

第 0 步:

用0 (或小的随机值)来初始化权重向量和偏置量,或者直接使用正态方程计算模型参数

第 1 步(只有在使用梯度下降法训练时需要):

计算输入的特征与权重值的线性组合,这可以通过矢量化和矢量传播来对所有训练样本进行处理:

其中 X 是所有训练样本的维度矩阵,其形式为

;· 表示点积。

第 2 步(只有在使用梯度下降法训练时需要):

用均方误差计算训练集上的损失:

第 3 步(只有在使用梯度下降法训练时需要):

对每个参数,计算其对损失函数的偏导数:

所有偏导数的梯度计算如下:

第 4 步(只有在使用梯度下降法训练时需要):

更新权重向量和偏置量:

其中,

表示学习率。

In [4]:

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

np.random.seed(123)

数据集

In [5]:

# We will use a simple training set

X = 2 * np.random.rand(500, 1)

y = 5 + 3 * X + np.random.randn(500, 1)

fig = plt.figure(figsize=(8,6))

plt.scatter(X, y)

plt.title("Dataset")

plt.xlabel("First feature")

plt.ylabel("Second feature")

plt.show()

In [6]:

# Split the data into a training and test set

X_train, X_test, y_train, y_test = train_test_split(X, y)

print(f'Shape X_train: {X_train.shape}')

print(f'Shape y_train: {y_train.shape}')

print(f'Shape X_test: {X_test.shape}')

print(f'Shape y_test: {y_test.shape}')

Shape X_train: (375, 1)Shape y_train: (375, 1)Shape X_test: (125, 1)Shape y_test: (125, 1)

线性回归分类

In [23]:

class LinearRegression:

def __init__(self):

pass

def train_gradient_descent(self, X, y, learning_rate=0.01, n_iters=100):

"""

Trains a linear regression model using gradient descent

"""

# Step 0: Initialize the parameters

n_samples, n_features = X.shape

self.weights = np.zeros(shape=(n_features,1))

self.bias = 0

costs = []

for i in range(n_iters):

# Step 1: Compute a linear combination of the input features and weights

y_predict = np.dot(X, self.weights) + self.bias

# Step 2: Compute cost over training set

cost = (1 / n_samples) * np.sum((y_predict - y)**2)

costs.append(cost)

if i % 100 == 0:

print(f"Cost at iteration {i}: {cost}")

# Step 3: Compute the gradients

dJ_dw = (2 / n_samples) * np.dot(X.T, (y_predict - y))

dJ_db = (2 / n_samples) * np.sum((y_predict - y))

# Step 4: Update the parameters

self.weights = self.weights - learning_rate * dJ_dw

self.bias = self.bias - learning_rate * dJ_db

return self.weights, self.bias, costs

def train_normal_equation(self, X, y):

"""

Trains a linear regression model using the normal equation

"""

self.weights = np.dot(np.dot(np.linalg.inv(np.dot(X.T, X)), X.T), y)

self.bias = 0

return self.weights, self.bias

def predict(self, X):

return np.dot(X, self.weights) + self.bias

使用梯度下降进行训练

In [24]:

regressor = LinearRegression()

w_trained, b_trained, costs = regressor.train_gradient_descent(X_train, y_train, learning_rate=0.005, n_iters=600)

fig = plt.figure(figsize=(8,6))

plt.plot(np.arange(n_iters), costs)

plt.title("Development of cost during training")

plt.xlabel("Number of iterations")

plt.ylabel("Cost")

plt.show()

Cost at iteration 0: 66.45256981003433Cost at iteration 100: 2.2084346146095934Cost at iteration 200: 1.2797812854182806Cost at iteration 300: 1.2042189195356685Cost at iteration 400: 1.1564867816573Cost at iteration 500: 1.121391041394467

测试(梯度下降模型)

In [28]:

n_samples, _ = X_train.shape

n_samples_test, _ = X_test.shape

y_p_train = regressor.predict(X_train)

y_p_test = regressor.predict(X_test)

error_train =  (1 / n_samples) * np.sum((y_p_train - y_train) ** 2)

error_test =  (1 / n_samples_test) * np.sum((y_p_test - y_test) ** 2)

print(f"Error on training set: {np.round(error_train, 4)}")

print(f"Error on test set: {np.round(error_test)}")

Error on training set: 1.0955

Error on test set: 1.0

使用正规方程(normal equation)训练

# To compute the parameters using the normal equation, we add a bias value of 1 to each input example

X_b_train = np.c_[np.ones((n_samples)), X_train]

X_b_test = np.c_[np.ones((n_samples_test)), X_test]

reg_normal = LinearRegression()

w_trained = reg_normal.train_normal_equation(X_b_train, y_train)

测试(正规方程模型)

y_p_train = reg_normal.predict(X_b_train)

y_p_test = reg_normal.predict(X_b_test)

error_train =  (1 / n_samples) * np.sum((y_p_train - y_train) ** 2)

error_test =  (1 / n_samples_test) * np.sum((y_p_test - y_test) ** 2)

print(f"Error on training set: {np.round(error_train, 4)}")

print(f"Error on test set: {np.round(error_test, 4)}")

Error on training set: 1.0228

Error on test set: 1.0432

可视化测试预测

# Plot the test predictions

fig = plt.figure(figsize=(8,6))

plt.scatter(X_train, y_train)

plt.scatter(X_test, y_p_test)

plt.xlabel("First feature")

plt.ylabel("Second feature")

plt.show()

▌2. Logistic 回归算法

在 Logistic 回归中,我们试图对给定输入特征的线性组合进行建模,来得到其二元变量的输出结果。例如,我们可以尝试使用竞选候选人花费的金钱和时间信息来预测选举的结果(胜或负)。Logistic 回归算法的工作原理如下。

给定:

数据集

是d-维向量

是一个二元的目标变量

Logistic 回归模型可以理解为一个非常简单的神经网络:

它有一个实值加权向量

它有一个实值偏置量 b

它使用 sigmoid 函数作为其激活函数

与线性回归不同,Logistic 回归没有封闭解。但由于损失函数是凸函数,因此我们可以使用梯度下降法来训练模型。事实上,在保证学习速率足够小且使用足够的训练迭代步数的前提下,梯度下降法(或任何其他优化算法)可以是能够找到全局最小值。

训练 Logistic 回归模型有不同的步骤。首先(在步骤 0 中),模型的参数将被初始化。在达到指定训练次数或参数收敛前,重复以下其他步骤。

第 0 步:用 0 (或小的随机值)来初始化权重向量和偏置值

第 1 步:计算输入的特征与权重值的线性组合,这可以通过矢量化和矢量传播来对所有训练样本进行处理:

其中 X 是所有训练样本的维度矩阵,其形式为

;·表示点积。

第 2 步:用 sigmoid 函数作为激活函数,其返回值介于0到1之间:

第 3 步:计算整个训练集的损失值。

我们希望模型得到的目标值概率落在 0 到 1 之间。因此在训练期间,我们希望调整参数,使得模型较大的输出值对应正标签(真实标签为 1),较小的输出值对应负标签(真实标签为 0  )。这在损失函数中表现为如下形式:

第 4 步:对权重向量和偏置量,计算其对损失函数的梯度。

关于这个导数实现的详细解释,可以参见这里(https://stats.stackexchange.com/questions/278771/how-is-the-cost-function-from-logistic-regression-derivated)。

一般形式如下:

对于偏置量的导数计算,此时

为 1。

第 5 步:更新权重和偏置值。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值