我正在开发一个不支持浮点数学运算的微控制器.仅整数数学.因此,没有sqrt()函数,并且我无法导入任何数学模块. MCU运行的是python的子集,它支持8种Python数据类型:无,整数,布尔值,字符串,函数,元组,字节列表和迭代器.而且,MCU无法执行楼层分割(//).
我的问题是我需要计算3个有符号整数的大小.
mag = sqrt(x**2+y**2+z**2)
FWIW,值只能在/ -1024范围内,我只需要一个近似值即可.有没有人有解决这个问题的模式?
解决方法:
请注意,最大可能的总和是3 * 1024 ** 2,因此最大可能的平方根是1773(底数-或1774舍入).
因此,您可以简单地将0作为开始猜测,并重复加1直到平方超过总和.最多只能进行1770次迭代.
当然那可能太慢了.一个简单的二进制搜索可以将其减少到11次迭代,并且不需要除法(我假设MCU可以右移1位,这与下限除以2相同).
编辑
以下是一些代码,用于二进制搜索返回真实平方根的底数:
def isqrt(n):
if n <= 1:
return n
lo = 0
hi = n >> 1
while lo <= hi:
mid = (lo + hi) >> 1
sq = mid * mid
if sq == n:
return mid
elif sq < n:
lo = mid + 1
result = mid
else:
hi = mid - 1
return result
要检查,请运行:
from math import sqrt
assert all(isqrt(i) == int(sqrt(i)) for i in range(3*1024**2 + 1))
根据您所说的内容,这将检查所有可能的输入-而且众所周知,二进制搜索在所有情况下都很难正确执行,因此检查每种情况都很好!在“真正的”机器上不需要很长时间;-)
可能重要
为防止可能的溢出并显着加快溢出速度,请将lo和hi的初始化更改为:
hi = 1
while hi * hi <= n:
hi <<= 1
lo = hi >> 1
然后,运行时间与结果中的位数成正比,大大加快了较小结果的速度.确实,对于“关闭”的草率定义,您可以就此停下来.
出于可怜;-)
看起来OP实际上根本不需要平方根.但是对于可能负担不起分割的人来说,这是代码的简化版本,还消除了初始化中的乘法.注意:我没有使用.bit_length(),因为许多已部署的Python版本不支持.
def isqrt(n):
if n <= 1:
return n
hi, hisq = 2, 4
while hisq <= n:
hi <<= 1
hisq <<= 2
lo = hi >> 1
while hi - lo > 1:
mid = (lo + hi) >> 1
if mid * mid <= n:
lo = mid
else:
hi = mid
assert lo + 1 == hi
assert lo**2 <= n < hi**2
return lo
from math import sqrt
assert all(isqrt(i) == int(sqrt(i)) for i in range(3*1024**2 + 1))
标签:square-root,python,math
来源: https://codeday.me/bug/20191026/1940110.html