arima模型python实现_如何在Python中保存ARIMA时间序列预测模型

How to Save an ARIMA Time Series Forecasting Model in Python

原文作者:Jason Brownlee

译者微博:@从流域到海域

译者博客:blog.csdn.net/solo95

如何在Python中保存ARIMA时间序列预测模型

自回归积分滑动平均模型(Autoregressive Integrated Moving Average Mode, ARIMA)是一个流行的时间序列分析和预测的线性模型。

statsmodels库中提供了Python中所使用ARIMA的实现。ARIMA模型可以保存到一个文件中,以便以后用于对新数据进行预测。statsmodels库的当前版本中有一个bug,会阻止保存的模型被加载。

在本教程中,您将了解如何诊断和解决此问题。

让我们开始吧。

如何在Python中保存ARIMA时间序列预测模型

日均女性出生数据集

首先,我们来看一个标准的时间序列数据集,我们可以用它来理解有关statsmodels ARIMA实现的问题。

这个“日均女性出生”数据集描述了1959年加利福尼亚州每天的女性出生人数。

计数单位是一,365天都进行了观察。数据集的来源归功于Newton(1988)。

下载数据集并将其放在当前工作目录中,文件命名为“ daily-total-female-births.csv ”。

下面的代码片段将加载和绘制数据集。

from pandas import Series

from matplotlib import pyplot

series = Series.from_csv('daily-total-female-births.csv', header=0)

series.plot()

pyplot.show()

运行示例将数据集加载为Pandas系列,然后显示数据的线图。

日均女性出生总数图

Python环境

请确认您使用的是最新版本的statsmodels库。

你可以通过运行下面的脚本来进行确认:

import statsmodels

print('statsmodels: %s' % statsmodels.__version__)

运行脚本应该产生一个显示statsmodels 0.6或0.6.1的结果。

statsmodels: 0.6.1

您可以使用Python 2或3。

更新:我可以确认故障仍存在于statsmodels 0.8中并导致下列错误消息出现:

AttributeError: 'ARIMA' object has no attribute 'dates'

ARIMA模型保存bug

我们可以很容易地在“日均女性出生”数据集上训练一个ARIMA模型。

下面的代码片段在数据集上的训练出一个ARIMA(1,1,1)模型。

model.fit()函数返回一个ARIMAResults对象,我们可以在这个对象上调用save()保存到文件模型并且之后可以使用load()来加载它。

from pandas import Series

from statsmodels.tsa.arima_model import ARIMA

from statsmodels.tsa.arima_model import ARIMAResults

# load data

series = Series.from_csv('daily-total-female-births.csv', header=0)

# prepare data

X = series.values

X = X.astype('float32')

# fit model

model = ARIMA(X, order=(1,1,1))

model_fit = model.fit()

# save model

model_fit.save('model.pkl')

# load model

loaded = ARIMAResults.load('model.pkl')

运行本例将训练出模型并将其保存到文件中,而不会出现问题。

但当您尝试从文件加载模型时,会报告一个错误。

Traceback (most recent call last):

File "...", line 16, in

loaded = ARIMAResults.load('model.pkl')

File ".../site-packages/statsmodels/base/model.py", line 1529, in load

return load_pickle(fname)

File ".../site-packages/statsmodels/iolib/smpickle.py", line 41, in load_pickle

return cPickle.load(fin)

TypeError: __new__() takes at least 3 arguments (1 given)

特别的,注意下面这一行:

TypeError: __new__() takes at least 3 arguments (1 given)

之前的步骤都没出错,那么我们如何解决这个问题呢?

ARIMA模型保存Bug解决方法

Zae Myung Kim在2016年9月发现了这个错误并报告了错误。

你可以在这里读到所有和它有关的信息:

这个错误是因为pickle所需要的一个函数(用于序列化Python对象的库)在statsmodels中没有定义。

在保存之前,必须在ARIMA模型中定义函数__getnewargs__,以定义构造对象所需的参数。

我们可以解决这个问题。修复涉及两件事情:

定义一个适用于ARIMA对象的___getnewargs___函数的实现 。

将这个新函数添加到ARIMA。

谢天谢地,Zae Myung Kim在他的bug报告中提供了一个函数的例子,所以我们可以直接使用它:

def __getnewargs__(self):

return ((self.endog),(self.k_lags, self.k_diff, self.k_ma)

Python允许我们对一个对象施加猴补丁操作,即使是像statsmodels这样的库。

(猴补丁(英语:Monkey patch),参见维基百科,有相应中文条目,译者注)

我们可以使用赋值在现有的对象上定义一个新的函数。

我们可以对ARIMA对象上的___getnewargs___函数做如下操作:

ARIMA.__getnewargs__ = __getnewargs__

下面列出了使用猴补丁在Python中加载和保存ARIMA模型的完整示例:

from pandas import Series

from statsmodels.tsa.arima_model import ARIMA

from statsmodels.tsa.arima_model import ARIMAResults

# monkey patch around bug in ARIMA class

def __getnewargs__(self):

return ((self.endog),(self.k_lags, self.k_diff, self.k_ma))

ARIMA.__getnewargs__ = __getnewargs__

# load data

series = Series.from_csv('daily-total-female-births.csv', header=0)

# prepare data

X = series.values

X = X.astype('float32')

# fit model

model = ARIMA(X, order=(1,1,1))

model_fit = model.fit()

# save model

model_fit.save('model.pkl')

# load model

loaded = ARIMAResults.load('model.pkl')

现在运行示例就可以成功加载模型,而不会出错。

概要

在这篇文章中,您了解了如何解决statsmodels ARIMA实现时的一个错误,该错误阻止了您将ARIMA模型保存到文件或从文件中加载ARIMA模型。

你学到了如何编写一个猴补丁来解决这个bug,以及如何证明它确实已经修复了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值