python最大连续递增子列_最长递增子序列(LIS)解法详述

求数组中最长递增子序列(Longest Increasing Subsequence, LIS)

LIS问题是算法中的经典题目,传统的解法是使用动态规划,时间复杂度是O(n^2);改进的方法时间复杂度是O(nlogn)。但是关于改进的算法的介绍尽管网上有很多资源,但是有许多看起来没问题,但是经不起推敲,我看的时候感觉有点看不明白,查阅半天弄懂后再回去看,发现他们的表述有问题,因此总结一下。

这篇总结使用从传统解法逐步改进的演绎方法,并给出一些推理。

如果读者不喜欢这种演绎思考方法,推荐Slyar的方法,他从另一个角度看待这个问题,写得十分简洁,但是没有接触过的话,可能不易理解。

本文仍有许多不足,欢迎指正。

传统的解法是使用动态规划。原理如下:

data[i]表示数组中的第i个元素;

lis[i]表示以元素i结尾的最长递增子序列长度;

那么lis[i] = max(lis[j]) + 1, j∈{k | data[k] < data[i], k < i}

时间复杂度是O(n^2),它的主要优点是算法简单,可以构造最长递增子序列。

intlis[N];intLIS_DP(int*data,intn)

{

memset(lis,1, n*sizeof(lis[0]));for(inti=1; i!=n;++i)

{for(intj=0; j!=i;++j)

{if(data[i]>data[j]&&lis[i]

lis[i]=lis[j]+1;

}

}intmax=0;for(inti=0; i!=n;++i)if(max

max=lis[i];returnmax;

}

另一种方法稍微有些复杂,它是针对上面方法的一种改进,时间复杂度是O(nlogn)。下面使用渐近的方法来分析获得。

首先我们来分析一下上面算法的不足,在上面的求解中,每个lis[i]求解的时间复杂度是O(n),但这不是必需的

0  1  2  3  4  5  6  7

data[]:2  5  6  2  3  4  7  4

lis[]:  1  2  3  1  2  3  4  3

例如,当求lis[6]时,是不用和data[3]、data[4]比较的,因为已经知道它们所在的最大递增子序列的最后一个元素data[5] < data[6];也就是说,当我们考察第i个元素时,对前面i-1个元素的任何一个递增子序列,如果这个子序列的最后一个元素比data[i]小,那么就可以将data[i]加在这个子序列后面,构成一个新的更长的递增子序列,而不用比较这个子序列前面的元素和data[i]的关系。

由此我们得出第一个启发式方法,当计算lis[i]时,我们只关心每个前i-1元素中递增子序列的最后一个元素的值。

针对第一种方法引入的观点,提出第二个启发式方法,同样求lis[6],对前i-1个元素,获得两个长度为3的递增子序列2、5、6和2、3、4,此时已知data[6] > 6且data[6]大于4,所以data[6]可以接在任何一个子序列后面,构成长度为4的新递增序列。这个时候,会发现一个启发方法,data[6]不用和6比较,因为只需data[6]大于4就可以得出一个长度为4的递增序列。

所以得出第二个启发式方法,当计算lis[i]时,对同样长度的子序列,我们只关心它们最后元素的值最小的一个的值。

由此,由一个数组last_min记录上面的值,即当计算lis[i]时,last_min[k]表示前i-1个元素中长度为k的所有递增子序列的最后一个元素的最小值。

设max_len表示当前已获得的最长的递增子序列。

当考察data[i]时,如果data[i] > last_min[max_len],那么将data[i]接在这个序列后面,便构成一个新的长度为max_len+1的序列,该序列的最后一个元素是data[i];否则,找到一个最大的j,使last_min[j]

intlis[N];//lis[i]表示以元素i结尾的最长递增子序列长度intlast_min[N];//last_min[i]表示长度为i的所有递增子序列的//最后一个元素的最小值intmax_len;intLIS_DP(int*data,intn)

{

memset(lis,1, n*sizeof(lis[0]));

last_min[1]=data[0];

max_len=1;for(inti=1; i!=n;++i)

{//如果data[i]比最长递增序列的最后一个元素大,//那么直接加在它后面便可if(data[i]>last_min[max_len])

{++max_len;

last_min[max_len]=data[i];

lis[i]=max_len;

}else{//否则查找历史最长递增序列for(intj=max_len-1; j!=0;--j)

{if(data[i]>last_min[j])//也就是说,data[i] <= last_min[j+1]{

lis[i]=j+1;

last_min[j+1]=data[i];//更新break;

}

}

}

}returnmax_len;

}

如上所示,虽然已经进行了很大的优化,但是当前的时间复杂度仍是O(n^2),当然基本可以确定的是,现在的算法比原来的效率提高了很多。

下面我们分析一下last_min数组的性质,

由定义last_min[i]表示长度为i的序列A的最后一个元素的值,last_min[i-1]表示长度为i-1的序列B的最后一个元素的值,那么last_min[i-1]

因此在上面的查找中可以使用二分查找,效率为O(logn),使得总的复杂度为O(nlogn)。

//返回arr中等于或第一个大于val的位置intBinarySearch(int*arr,intleft,intright,intval)

{intmid=0;intl=left;intr=right;while(l<=r)

{

mid=(l+r)>>1;if(arr[mid]>val) r=mid-1;elseif(arr[mid]

}returnl;

}intlast_min[N];//last_min[i]表示长度为i的所有递增子序列的//最后一个元素的最小值intmax_len;intLIS_DP(int*data,intn)

{

last_min[1]=data[0];

max_len=1;for(inti=1; i!=n;++i)

{//如果data[i]比最长递增序列的最后一个元素大,//那么直接加在它后面便可if(data[i]>last_min[max_len])

{++max_len;

last_min[max_len]=data[i];

}else{//否则查找历史最长递增序列intj=BinarySearch(last_min,1, max_len, data[i]);

last_min[j]=data[i];

}

}returnmax_len;

}

在程序二中,lis数组完全没有作用,所以在程序三中没有使用。

与程序一相比,程序三在效率上有明显的提升,但是不能根据last_min构造出最长递增子序列。

参考文献

编程之美—微软技术面试心得.2.16节

posted on 2011-06-09 23:44 jaysoon 阅读(2297) 评论(0)  编辑 收藏 引用 所属分类: ACM/ICPC

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值