之前我们介绍了富集分析的基本的内容:GO分析和KEGG分析都是啥?。但是富集分析还是有很多不同的算法的,对于主要的算法过程其实不用太多了解,这个由专业人士来解决就行。但是对于其输入条件和主要区别还是要了解的,这样能方便我们使用。
◆ ◆ ◆ORA (Over Representation Analysis)过表达分析
我们常规的做的或者公司给的富集分析的结果里面给的GO分析和KEGG分析的结果就是使用ORA的算法来做的。
这个算法采取的类似于一刀切的逻辑思维,我们需要对差异的结果设置一个标准(通常也就是我们差异表达的条件)。如果达到这个标准了,那就可以当作候选分析的基因。最后我们把所有候选分析的基因都选出来,把基因名都输入到算法里面,再结合背景数据库就得到分析的结果了。
所以这个算法的主要输入条件其实就是基因名即可。一般而言ORA使用的背景数据集就是GO和KEGG这些。
可视化选择
对于ORA的可视化方面的话,由于富集的差异筛选也是基于P值来进行筛选的。所以一般通过柱状图或者气泡图也就可以进行展示了。例如下面的柱状图。

本文介绍了基因富集分析的三种主要算法:ORA过表达分析、GSEA基因集富集分析和NTA网络拓扑分析。GSEA考虑未达严格筛选标准基因的作用,需要整个基因组表达数据;ORA基于P值筛选,常用GO和KEGG数据集;NTA构建基因相互作用网络。选择时常更新的数据库如clusterProfiler和WebGestalt以获取准确结果。
最低0.47元/天 解锁文章
645

被折叠的 条评论
为什么被折叠?



