东南大学计算机科学与工程学院周德宇d.zhou@seu.edu.cn.ppt
1 木 火 土 金 水 * 例如n!可以用递归定义。 递归定义的好处: 直观,揭示了运算的过程,更符合计算机的思维。 * * * * * * * * 1.1 命题与联接词 问题2: 得道多助,失道寡助 (p?q)?(?p??q) 1.1 命题与联接词 课堂练习: p:2+3=5 q:大熊猫产在中国 r:太阳从西部升起 求下列命题真值 (r?(p?q))?(p?r) F F F T T T F F 1.2 命题公式及其赋值 命题常项:简单命题 命题变项:表示命题的变量 真值可以变化的陈述句 命题变项不是命题 命题变项用确定命题代入才能确定真值 命题所用符号:常用小写26个英文字母 命题变量不同于代数式的变量 x+y>4的x,y不是命题变量 蕴含的几种表述 如果p, 则q P仅当q 只有q才p 除非q才p 除非q否则非p 1.2 命题公式及其赋值 合式公式(命题公式)的递归定义: 单个命题常项或命题变项是合式公式(原子命题公式) A为合式公式,则?A是合式公式 A,B为合式公式,则(A?B),( A?B), A?B), ( A?B)为合式公式 4. 有限次应用1-3形成的字符串为合式公式 思考一下递归定义的好处 子公式B:给定合式公式A B是A的一部分 B是合式公式 1.2 命题公式及其赋值 符号说明 大写字母A,B表示合式公式 公式简写法则: 公式最外层括号可以省略 (? A)的括号可以省略 根据运算符优先级省略括号 省略括号不能影响公式解释 1.2 命题公式及其赋值 合式公式的树状展开 (A?B)?((?C)?(D?C)) A?B A B (?C)?(D?C) (?C) D?C C D C 1.2 命题公式及其赋值 例子 (A?B)??C (p?q)?(q??r) (?B) pq?r 1.2 命题公式及其赋值 公式层次 若公式A是单个的命题变元,则称A为0层合式 称公式A是n+1(n≥0)层公式是指下面情况之一 A= ?B,B是n层公式 A=BΛC,其中B,C分别为i层和j层公式,且n=max(i,j) A=B ∨ C ,其中B,C的层次及n同(b) A=B ? C ,其中B,C的层次及n同(b) A=B ? C ,其中B,C的层次及n同(b) 若公式A的层次为k,则称A是k层公式 层次≠联接词数 1.2 命题公式及其赋值 例子:p,q,r,s为命题变元 ((?p?q)?r)??s (p?q)?(q??r) (p??q?r)?s? (p?q?r) 4 3 5 1.2 命题公式及其赋值 命题公式的真值 命题变项的常量化:常项替换(解释) 例子:公式p?q?r 真值为T的解释 p:3是奇数;q:7是奇数;r:3乘7是奇数 真值为F的解释 p:3是奇数;q:7是奇数;r:3乘7是偶数 赋值 命题变项赋真命题?命题变项的真值为T 命题变项赋假命题?命题变项的真值为F 1.2 命题公式及其赋值 命题变项赋值 A中命题变项:p1,…pn 对p1,…pn赋值v:v(pi)=?i ,?i ?{T,F} 对A的真值递归定义 v(?B)=T iff v(B)=F v(B?C)=T iff v(B)=v(C)=T v(B?C)=F iff v(B)=v(C)=F v(B?C)=F iff v(B)=T,v(C)=F v(B?C)=T iff v(B)=v(C) 赋值(解释)简写:?1 ?2…,?n n个变项的公式,共有2n个不同赋值 1.2 命题公式及其赋值 命题变项赋值 成真赋值:v(A)=T 成假赋值:v(A)=F 例子:公式(?p?q)?r FFF(p=F,q=F,r=F) TFF? (?p?q)?r F F F 1.2 命题公式及其赋值 真值表:A所有赋值列成表 真值表构造: 找出A中命题变项:p1,…pn 列出2n个赋值(2进制加法形式) 从高到低写成公式各个层次 各个赋值:计算各层的真值 1.2 命题公式及其赋值 例?((p?q)?p) p q p?q (p?q)?p ?((p?q)?p) F F F F T F T T F T T F T T F T T T T F 1.2 命题公式及其赋值 例p?(q?r) p q r q?r p?(q?r) F F F F F F F T F F F T F F F F T T T T T F F F T T F T F T T T F F T T T T T T 1.2 命题公式及其赋值 例(p ? q) ?(p?q??p??q) p q ?p ?q p ? q p?q??p??q 公式 F F T T T T T F T T F F F T T F F T F