python pandas库作用_python pandas库常用功能与函数介绍(持续更新中)

猫老师今天上课时正好讲到了pandas包的使用,于是想作为教材的补充,来进行一下知识点的重组,请有空的同学们去上机实验。

一、常用功能及函数简介

导入相关的包

一般我们需要做如下导入,numpy和pandas一般需要联合使用:

import pandas as pd

import numpy as np

本文采用如下缩写:

df:Pandas DataFrame对象

s: Pandas Series对象

数据导入pd.read_csv(filename):从CSV文件导入数据

pd.read_table(filename):从限定分隔符的文本文件导入数据

pd.read_excel(filename):从Excel文件导入数据

pd.read_sql(query, connection_object):从SQL表/库导入数据

pd.read_json(json_string):从JSON格式的字符串导入数据

pd.read_html(url):解析URL、字符串或者HTML文件

pd.read_clipboard():从粘贴板获取内容

pd.DataFrame(dict):从字典对象导入数据

数据导出

l df.to_csv(filename):导出数据到CSV文件

l df.to_excel(filename):导出数据到Excel文件

l df.to_sql(table_name, connection_object):导出数据到SQL表

l df.to_json(filename):以Json格式导出数据到文本文件

创建对象

pd.DataFrame(np.random.rand(20,5)):创建20行5列的随机数组成的DataFrame对象

pd.Series(my_list):从可迭代对象my_list创建一个Series对象

df.index = pd.date_range('1900/1/30', periods=df.shape[0]):增加一个日期索引

index和reindex联合使用很有用处,index可作为索引并且元素乱排序之后,所以跟着元素保持不变,因此,当重拍元素时,只需要对index进行才重排即可:reindex。

另外, reindex时,还可以增加新的标为NaN的元素。

数据查看

df.head(n):查看DataFrame对象的前n行

df.tail(n):查看DataFrame对象的最后n行

df.shape():查看行数和列数

df.describe():查看数值型列的汇总统计

s.value_counts(dropna=False):查看Series对象的唯一值和计数

df.apply(pd.Series.value_counts):查看DataFrame对象中每一列的唯一值和计数

apply的用处很多,比如可以通过跟lambda函数联合,完成很多功能:将包含某个部分的元素挑出来等等。

2020.6.5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值