matlab解隐式差分格式,【毕业设计(论文)】二维热传导方程有限差分法的MATLAB实现...

本文详细介绍了如何使用MATLAB实现二维热传导方程的有限差分法,包括差分格式的建立、方程组的转化、稳定性分析以及隐式差分格式的矩阵求解方法,特别强调了追赶法在解决这类线性方程组中的应用。
摘要由CSDN通过智能技术生成

111.png

苏佳园:二维热传导方程有限差分法的MATLAB实现

l所构成,其中xj?j?x?h,?x?h?J;tn?n?t?n?.

3.2插值函数的选择

选择不同的插值函数对偏微分方程进行估计,可得到不同的差分方程,进而稳定性和精度会有所不同。

用Taylor级数展开方法是最常用的方法,下面建立差分格式的同时引入一些基本概念及术语。

我们主要从对流方程的初值问题

?u??u?a?0,x?R,t?0,? (3.1) ?x??t??u(x,0)?g(x),x?R,和扩散方程的初值问题

?u?2u?a2,?t?xu(x,0)?g(x),(其中a?0)进行讨论。

x?R,t?0, (3.2) x?R.

假定偏微分方程初值问题的解u(x,y)是充分官话的,由Taylor级数展开有

u(xj,tn?1)?u(xj,tn)?un????(?t),?t?tj?u(xj,tn?1)?u(xj,tn?1)2??un???(?t),2?t?tj?u(xj?1,tn)?u(xj,tn)?(3.3) ?un???(h),h?xj?u(xj,tn)?u(xj?1,tn)??un???(h),?h?xj?u(xj?1,tn)?u(xj?1,tn)2?un???(h),?2h?xj?u(xj?1,tn)?2u(xj,tn)?u(xj?1,tn)n2?2u????(h).22h?xj?

????????????n其中???n或用,表示看括号内的函数在节点(xj,tn)处取的值。利用(3.3)表达式???jj中的第1式和第3式有

u(xj,tn?1)?u(xj,tn)?

?au(xj?1,tn)?u(xj,tn)h6

?u?un?[?a]j??

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值