苏佳园:二维热传导方程有限差分法的MATLAB实现
l所构成,其中xj?j?x?h,?x?h?J;tn?n?t?n?.
3.2插值函数的选择
选择不同的插值函数对偏微分方程进行估计,可得到不同的差分方程,进而稳定性和精度会有所不同。
用Taylor级数展开方法是最常用的方法,下面建立差分格式的同时引入一些基本概念及术语。
我们主要从对流方程的初值问题
?u??u?a?0,x?R,t?0,? (3.1) ?x??t??u(x,0)?g(x),x?R,和扩散方程的初值问题
?u?2u?a2,?t?xu(x,0)?g(x),(其中a?0)进行讨论。
x?R,t?0, (3.2) x?R.
假定偏微分方程初值问题的解u(x,y)是充分官话的,由Taylor级数展开有
u(xj,tn?1)?u(xj,tn)?un????(?t),?t?tj?u(xj,tn?1)?u(xj,tn?1)2??un???(?t),2?t?tj?u(xj?1,tn)?u(xj,tn)?(3.3) ?un???(h),h?xj?u(xj,tn)?u(xj?1,tn)??un???(h),?h?xj?u(xj?1,tn)?u(xj?1,tn)2?un???(h),?2h?xj?u(xj?1,tn)?2u(xj,tn)?u(xj?1,tn)n2?2u????(h).22h?xj?
????????????n其中???n或用,表示看括号内的函数在节点(xj,tn)处取的值。利用(3.3)表达式???jj中的第1式和第3式有
u(xj,tn?1)?u(xj,tn)?
?au(xj?1,tn)?u(xj,tn)h6
?u?un?[?a]j??