1、直接执行.sql脚本
import numpy as np
import pandas as pd
import lightgbm as lgb
from pandas import DataFrame
from sklearn.model_selection import train_test_split
from io import StringIO
import gc
import sys
import os
hive_cmd = "hive -f ./sql/sql.sql"
output = os.popen(hive_cmd)
data_cart_prop = pd.read_csv(StringIO(unicode(output.read(),‘utf-8‘)), sep="\t",header=0)
2、Hive语句执行
假如有如下hive sql:
hive_cmd = ‘hive -e "select count(*) from hbase.routermac_sort_10;"‘
一般在python中按照如下方式执行该hive sql:
os.system(hive_cmd)
---------------------
hive_cmd1 = "hive -f ./user.sql"
output1 = os.popen(hive_cmd1)
test_user = pd.read_csv(StringIO(unicode(output1.read(),‘utf-8‘)), sep="\t",header=0

本文介绍了如何在Python中调用Hive脚本和执行Hive SQL。通过`os.popen`和`os.system`函数,可以直接执行.sql文件或嵌入Hive查询,将结果转换为Pandas DataFrame进行处理。同时提到了在Hive脚本中设置`set hive.cli.print.header=true;`来显示表头,并展示了使用TensorFlow时如何管理显存。
最低0.47元/天 解锁文章
6036

被折叠的 条评论
为什么被折叠?



