解决过拟合的最终方法

今天有同学提问:老师,用预训练网络过拟合,微调,降低学习率以后,还是过拟合。

训练集在0.99或者1,测试集在0.95上不去了,测试集的loss也大得多。还有什么方法能再提高测试集的准确率或者减小过拟合吗?

这里可以看到这位同学已经探索了一些方法,可以继续使用dropout和正则化来抑制过拟合问题,但是解决过拟合最终的方法仍然是使用更多的训练数据。

过拟合的本质是模型对于train数据分布不能代表全部数据的分布,假设train数据足够多甚至囊括了全部数据的话,模型就会学习到所有数据的表达,而不会在test上表现很差了。

所以,当使用了很多技巧发现仍然不能抑制过拟合的时候,增加训练数据(也包含变相增加训练数据,比如数据增强)是一个好的思路。
问题讨论可加微信 louhh01 。

  • 0
    点赞
  • 1
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论

打赏作者

日月光华老师

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值