DeepSeek本地化部署


前言

最近的国产大模型DeepSeek横空出事,笔者也关注了下。网页版的免费而且推理速度很快,重量级的是它把自己详细的推理思考过程展示了出来,回答的问题和给出的各种解决方案更详细、完善,可以说是碾压了其他所有的国产大模型。但是网页版的总是服务器爆满,最近受到的西方国家黑客攻击又很多,体验不是很好。所以想着能本地部署下自己一个人使用就好了,于是笔者上网搜索了下资料,在自己的主机上搞了一套,但是结果却差强人意,将就着能用吧,就是慢了点,下面把安装部署的详细步骤展示给大家,感兴趣的可以自己试着部署玩一玩。


一、主机配置

笔者的主机基本配置如下
操作系统:windows11专业版
显卡:4090(24G显存)
处理器:Intel® Core™ i9-14900KF 3.20 GHz

这个配置可以说不错了,尽管市面上5090出来了,但是其实效果都一样,只有英伟达的计算显卡(H100、A100、RTX 6000 Ada等)才行,不过价格都是几万到十几万元,最新的GB200售价在3万-4万美元。普通消费级游戏显卡算力完全不行。我们平时玩游戏的显卡图形渲染能力强,专门用来玩各种3A大作。

  • 游戏显卡
    主要针对游戏、图形渲染、视频编辑等消费级场景,优化实时图形性能(如高帧率、光线追踪)。

  • 计算显卡
    面向科学计算、深度学习、AI训练、工程模拟等专业领域,注重并行计算能力和稳定性。

二、工具下载

Ollama下载安装

Ollama官网地址

下载windows上的,其他操作系统下载对应的即可
在这里插入图片描述

这个由于是外网下载很慢的,笔者通过一些其他手段下了下来,已经上传到文章顶部的资源压缩包了,可以自己下载解压,或者愿意等的自己从官网上慢慢下载就行

在这里插入图片描述
这个Ollama应用程序点击安装,默认直接是安装到C盘的,也没法设置其他自定义路径。。。
安装好后默认是运行的,电脑右下角隐藏图标多一个小猪头,鼠标放上去有两个选项

  • View Logs:查看日志的
  • Quit Ollama: 退出Ollama

在这里插入图片描述
安装好后,管理员身份打开CMD,键入以下命令

ollama -v

在这里插入图片描述
可以看到Ollama安装成功了

退出Ollama

上面的步骤说了,右下角的图标有个Quit Ollama,退出Ollama,点一下后,再次在cmd中输入ollama -v

在这里插入图片描述

找不到正在运行的Ollama实例了,怎么办呢,当我们关机后开机怎么重新运行Ollama服务?莫急,只需要在电脑左下角搜索框输入Ollama就可以找到刚才添加的应用,鼠标左键点击一下,就可以了。

在这里插入图片描述

cmd再次查看运行情况

在这里插入图片描述

当然你也可以把这个Ollama应用发送快捷方式到桌面上去,方便下次使用。

ollama设置模型并发处理请求

需要先退出关闭ollama,打开cmd键入以下命令,可以同时并发处理8个请求,注意哦你的电脑配置不一定扛得住,笔者的4090运行两个对话框同时回复消息都有点吃力了

# 启动参数优化
ollama serve --max-keepalive-streams 100 --grpc-max-recv-msg-size 2048MB

# 环境变量配置(系统级)
setx OLLAMA_NUM_PARALLEL 8
setx OLLAMA_MAX_LOADED_MODELS 4

在这里插入图片描述
需要注意的是,并发数不能太多,你的机器配置能力有限的

下载DeepSeek R1模型

  1. 选择模型:Ollama软件安装完成后,便要获取DeepSeek R1模型。再次打开Ollama官网,点击“Models”,在众多模型中,“deepseek - r1”位列榜首,十分醒目。
    在这里插入图片描述
    可以看到有1.5b,7b,14b,32b,70b,621b这些不同参数个数的模型,分别代表15亿,70亿,140亿,320亿,700亿,6210亿。当然训练参数个数越多,模型的能力越强了。点击进入,一般的电脑你就下载7b、14b就差不多了,像笔者的配置就可以下载32b。不过笔者一开始下载的是70b,也能跑,但是速度很慢,所以后面就又下载了32b。
    在这里插入图片描述
    选择32b,复制后面的运行命令
    在这里插入图片描述

把复制的命令在cmd中执行,注意执行期间ollama不能退出,否则就会像我一样下载失败,再次运行命令

在这里插入图片描述

在这里插入图片描述

下载安装ChatBox实现可视化交互

上面的交互是在cmd上进行的,不是很友好,这里有个工具ChatBox,集成了很多大模型,实现可视化交互

ChatBox下载地址

在这里插入图片描述

这个下载速度比较快了,不过笔者也在文章顶部的资源压缩包里一并提供了,点击安装即可

在这里插入图片描述

ChatBox设置模型

在这里插入图片描述
选择Ollama API,模型选择deepseek-r1:70b(或者下载的32b就选32b)

在这里插入图片描述

上面的设置好后就可以使用ChatBox进行可视化交互了

在这里插入图片描述

70b的运行速度比较慢,32b可能会好点吧,不明白的评论区找我!

### Windows 上本地部署 Deep Seek #### 准备工作 为了成功在Windows上部署Deep Seek,确保计算机满足最低硬件需求并已安装必要的软件环境。对于显卡用户,特别是使用AMD RX 580的设备,在Windows 10环境下操作时需注意特定驱动程序兼容性问题[^2]。 #### 下载与安装 Ollama 启动部署流程的第一步是从官方渠道获取最新版Ollama安装包(OllamaSetup.exe),通过双击该文件按照提示完成默认设置下的安装过程。 #### 获取 DeepSeek 模型 针对不同计算资源情况可以选择适合版本的大规模预训练模型。例如`deepseek-r1-8b`是一个较为轻量化但仍保持高效性能的选择;而对于拥有更强大GPU支持的情况,则可以考虑更大参数量如`deepseek-r1:70b`这样的高级选项[^3]。 ```bash ollama pull deepseek-r1-8b ``` 或是 ```bash ollama pull deepseek-r1:70b ``` #### 启动 ChatBox 并加载模型 一旦上述准备工作就绪,下一步就是配置运行环境来使能交互功能。这通常涉及到启动一个名为ChatBox的应用服务端口,并指定要使用的具体模型实例: ```python from chatbox import load_model, start_server model_path = "path/to/deepseek-model" chat_service = load_model(model_path) start_server(chat_service) ``` 以上步骤概括了基于Windows平台实现Deep Seek本地化部署的主要环节,实际执行过程中可能还会遇到一些细节上的调整需求,比如路径设定、依赖库管理等,这些都需要依据个人具体情况灵活处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值