
示例代码托管在:http://www.github.com/dashnowords/blogs
博客园地址:《大史住在大前端》原创博文目录
目录
TensorFlow是Google推出的开源机器学习框架,并针对浏览器、移动端、IOT设备及大型生产环境均提供了相应的扩展解决方案,TensorFlow.js就是JavaScript语言版本的扩展,在它的支持下,前端开发者就可以直接在浏览器环境中来实现深度学习的功能,尝试过配置环境的读者都知道这意味着什么。浏览器环境在构建交互型应用方面有着天然优势,而端侧机器学习不仅可以分担部分云端的计算压力,也具有更好的隐私性,同时还可以借助Node.js在服务端继续使用JavaScript进行开发,这对于前端开发者而言非常友好。除了提供统一风格的术语和API,TensorFlow的不同扩展版本之间还可以通过迁移学习来实现模型的复用(许多知名的深度学习模型都可以找到python版本的源代码),或者在预训练模型的基础上来定制自己的深度神经网络,为了能够让开发者尽快熟悉相关知识,TensorFlow官方网站还提供了一系列有关JavaScript版本的教程、使用指南以及开箱即用的预训练模型,它们都可以帮助你更好地了解深度学习的相关知识。对深度学习感兴趣的读者推荐阅读美国量子物理学家Michael Nielsen编写的《神经网络与深度学习》(英文原版名为《Neural Networks and Deep Learning》),它对于深度学习基本过程和原理的讲解非常清晰。
一. 上手TensorFlow.js
Tensor(张量)是TensorFlow中的基本数据结构,它是向量和矩阵向更高维度的推广,从编程的角度来看,它的核心数据不过就是多维数组。或许你还记得在【带着canvas去流浪(9)】粒子动画一文中为了方便向量计算而定义的二维向量类Vector2,事实上它就可以被看作是Tensor在二维空间的简化形式。Tensor

本文介绍了如何使用TensorFlow.js在浏览器环境中实现深度学习功能,包括上手TensorFlow.js、构建卷积神经网络以及基于迁移学习的语音指令识别。通过示例代码和LeNet-5模型的搭建,阐述了前端开发者如何利用TensorFlow.js进行深度学习模型的构建和训练,并推荐了相关学习资源。
最低0.47元/天 解锁文章
64

被折叠的 条评论
为什么被折叠?



