总体流程
1. 数据预处理
- 清洗:去除噪声、特殊字符、标准化格式。
- 分词/标记化:拆分文本为单词或子词单元(如使用Tokenizer)。
- 元数据关联:附加来源、时间戳等信息,支持多维度检索。
2. 文本分块
- 固定长度分块:按字符或Token数切分,简单高效。
- 语义分块:基于句子边界或主题分割(如NLP模型识别段落主旨)。
- 重叠策略:相邻块间部分重叠,避免上下文断裂。
3. 向量化(Embedding)
- 嵌入模型:调用预训练模型(如OpenAI的text-embedding-ada-002)生成向量。
- 批量处理:并行计算提升效率,减少API调用开销(若使用云服务)。
- 归一化:对向量进行L2归一化,优化余弦相似度计算。
4. 索引构建与存储
- 向量数据库选择:集成Milvus、Pinecone等,支持ANN检索。
- 索引结构:采用HNSW(分层导航小世界)、IVF(倒排文件系统)等算法构建索引。
- 分布式存储:水平扩展应对海量数据,保障查询速度。
5. 查询与检索
- 向量化查询:将用户输入转换为同一向量空间的Embedding。
- 相似性搜索:通过ANN算法快速返回Top-K相近结果。
- 后处理:按相关性排序,结合元数据过滤(如时间、来源)。
6. 增量更新与优化
- 实时索引:支持新数据动态插入,避免全量重建。
- 压缩与量化:减少存储占用(如PQ乘积量化)。
- 反馈学习:根据用户点击数据优化分块或模型。
索引构建
-
模块化处理
将流程拆解为预处理、分块、向量化等独立模块,提升灵活性和可维护性。 -
分块策略优化上下文
通过滑动窗口或语义分割,平衡文本块的信息完整性与计算效率。 -
语义向量化
利用深度学习模型(如BERT、Sentence-BERT)将文本映射为高维向量,捕捉语义信息。 -
近似最近邻(ANN)搜索
牺牲少量精度以换取高速检索,适用于大规模数据场景。
相似度计算
1. 相似度比较原理
-
余弦相似度:
similarity = V q ⋅ V 1 ∥ V q ∥ ∥ V 1 ∥ \text{similarity} = \frac{V_q \cdot V_1}{\|V_q\| \|V_1\|} similarity=∥Vq∥∥V1∥Vq⋅V1仅考虑向量方向,忽略长度差异,适合文本语义匹配。
-
近似最近邻(ANN)加速:
使用HNSW算法构建图索引,将搜索复杂度从 ( O ( N ) ) (O(N)) (O(N)) 降至 ( O ( log N ) ) (O(\log N)) (O(logN))。
2. 分块与重叠策略
避免因分割丢失关键上下文。
Tokenizer在向量数据库中的表示形式
表示形式
在向量数据库中,Tokenizer的作用是将原始文本分割为独立的语义单元(单词、子词或短语),这些单元通过嵌入模型转换为固定长度的向量,最终存储为数值形式。以下是具体表示方式:
- 步骤示例:
- 输入文本:“Dify是一个智能AI开发平台”
- 分词结果(以中文为例):[“Dify”, “是”, “一个”, “智能”, “AI”, “开发”, “平台”]
- 向量化:通过模型(如BERT)将整个文本转换为一个768维向量(而非单独分词向量),例如:
[0.23, -0.56, ..., 0.78]
。
向量数据库的表结构
字段名 | 类型 | 说明 |
---|---|---|
id | 字符串/整数 | 唯一标识符(如UUID) |
embedding | 浮点数数组 | 文本的向量表示(如768维数组 [0.23, -0.56, ..., 0.78] ) |
raw_text | 字符串 | 原始文本(如"Dify是一个智能AI开发平台") |
chunk_info | JSON | 分块元数据(如分块位置、重叠窗口大小) |
metadata | JSON | 附加信息(如来源URL、创建时间、作者) |
特点:
- 非关系型设计:避免关系型数据库的表连接瓶颈,直接支持高维向量操作。
- 混合存储:向量与元数据并存,支持过滤(如按时间范围筛选)。
- 分布式扩展:数据分片存储,支持水平扩展(如Milvus的Shared-Nothing架构)。
完整流程示例
1. 数据插入阶段
- 输入文本:“Dify是一个智能AI开发平台”
- 分词与向量化:
- 分词结果:[“Dify”, “是”, “一个”, “智能”, “AI”, “开发”, “平台”]
- 向量化:通过BERT模型生成768维向量
V1 = [0.23, -0.12, ..., 0.45]
- 存储到数据库:
id | embedding | raw_text | metadata |
---|---|---|---|
001 | [0.23, -0.12,…] | “Dify是一个智能AI开发平台” | {“source”: “官网”, “time”: “2023-10-01”} |
2. 检索阶段
- 用户查询:“AI开发工具”
- 查询处理:
- 分词与向量化:
- 分词结果:[“AI”, “开发”, “工具”]
- 向量化生成查询向量
Vq = [0.18, 0.05, ..., 0.67]
- 相似度计算:
- 计算
Vq
与数据库中所有向量的余弦相似度:- 与V1的相似度:
cos(Vq, V1) = 0.92
- 与V1的相似度:
- 计算
- 命中结果:
- 返回相似度最高的记录(id=001),并附加原始文本和元数据。
- 分词与向量化:
Dify中文本生成应用的流程及知识库整合机制
一、核心流程概览
-
用户提问接收与预处理
- 输入解析:清洗用户输入(去除特殊字符、纠错)。
- 意图识别:使用NLP模型(如BERT)分类问题类型(如技术配置、概念解释)。
- 关键实体提取:识别问题中的核心实体(如“API密钥”、“部署流程”)。
-
知识库检索
- 语义向量化:将用户问题转换为高维向量(如使用Sentence-BERT)。
- 近似最近邻(ANN)搜索:在向量数据库中检索Top-K相似知识条目。
- 相关性过滤:通过阈值(如余弦相似度>0.8)筛选有效结果。
-
回答生成
- 知识注入:将检索到的知识片段插入生成模型的上下文(如GPT-3的Prompt模板)。
- 可控生成:通过提示工程限制模型仅基于知识库内容生成回答(减少幻觉)。
- 多源整合:若多条知识相关,合并关键信息(如步骤列表、注意事项)。
-
未命中处理
- 知识库无结果:触发通用回答(如“暂未收录此问题,已记录反馈”)。
- 低置信度结果:提供模糊引导(如“是否想问类似问题:XXX?”)。
-
后处理与反馈
- 格式化输出:添加标记、代码块高亮等增强可读性。
- 用户反馈收集:允许用户标记回答质量,用于优化检索与生成模型。
知识命中与回答生成示例
用户提问:
“如何在Dify中配置私有化模型的API端点?”
流程分解:
-
检索阶段
- 向量化查询,命中知识库条目:
{ "id": "KB_203", "content": "配置私有模型需在「模型设置」填写API地址和密钥,并启用SSL验证。", "metadata": {"category": "部署", "更新时间": "2023-09"} }
- 相似度得分:0.91(超过阈值0.8)。
- 向量化查询,命中知识库条目:
-
生成阶段
- Prompt模板:
已知知识:{KB_203内容} 问题:{用户提问} 要求:用中文分步骤回答,包含代码示例(若有)。
- 生成结果:
在Dify中配置私有模型API端点的步骤如下: 1. 进入「模型设置」页面,定位到“私有模型集成”模块。 2. 填写API地址(如`https://your-domain.com/v1`)和认证密钥。 3. **启用SSL验证**(推荐勾选以保证安全性)。 示例代码(Python): ```python dify.configure_model( endpoint="your-endpoint", api_key="your-key", ssl_verify=True )
- Prompt模板:
未命中知识库的处理规则
-
阈值判定规则
- 严格模式:相似度<0.6时,直接返回“未找到相关信息”。
- 宽松模式:相似度<0.6但>0.4时,提示相近问题或建议重述。
-
备用策略
- 调用通用模型:切换至GPT-4的基础知识生成回答,附加免责声明(如“以下回答基于通用知识,仅供参考”)。
- 转人工介入:提供“联系支持”按钮,并自动记录问题到待处理队列。
-
动态学习机制
- 主动学习:未命中问题自动触发知识库更新任务,由管理员审核后补充内容。
- 用户反馈驱动:若用户多次提问同一未覆盖问题,提升其优先级至知识库扩展列表。
规则定义与配置
-
管理界面配置项
- 相似度阈值:滑动条调整(0.1~0.9)。
- 备用回答模板:支持Markdown自定义(如企业品牌话术)。
- 自动化扩展开关:启用/关闭未命中问题的自动学习功能。
-
代码级规则示例
if max_similarity < config.retrieval_threshold: if config.enable_fallback: response = generate_generic_answer(query) response += "\n\n*[注:此回答未引用知识库]*" else: response = "抱歉,暂无相关信息。已记录您的问题。"