MIT 线性代数笔记 第七讲:求解Ax=0:主变量,特解

第七讲:求解Ax=0:主变量,特解

本节主要讲了零空间的求解算法。

计算零空间 nullspace

A=\begin{bmatrix} 1 &2 &2 &2 \\ 2& 4 &6 &8 \\ 3&6 &8 &10 \end{bmatrix},虽然A的列空间并不是线性无关的,无论A是否可逆,都可以采用消元法进行零空间计算。

1.A\rightarrow U将A变为上三角矩阵

对A进行消元\begin{bmatrix} 1 &2 &2 &2 \\ 2& 4 &6 &8 \\ 3& 6 &8 &10 \end{bmatrix}\rightarrow \begin{bmatrix} 1 &2 &2 &2 \\ 0& 0 &2 &4 \\ 0& 0 &2 &4 \end{bmatrix}\rightarrow \begin{bmatrix} 1& 2 &2 &2 \\ 0 &0 &2 &4 \\ 0& 0& 0& 0 \end{bmatrix}

其中主元为第一列第一行的1和第三列第二行的2,。

矩阵的秩(rank):矩阵主元的个数,为2。

主元列(pivot column):矩阵包含主元的列,第一列和第三列。

自由列(free column):不包含主元的列称为自由列,第二列和第四列。

特解 Special solutions

可对自由变量x2,x4进行赋值求得特解。例如另x2=1,x4=0。则通过回代可得一解,x=\begin{bmatrix} -2\\ 1\\ 0\\ 0 \end{bmatrix},其任意倍数均在矩阵的零空间之内。同理对x2,x4取其他值可得到另一特解。矩阵A的零空间就是这些特解向量的线性组合构成的空间。

 矩阵的秩r等于主元列的个数,则自由列的数目为n-r(n为总列数)。这个值为特解的数目和零空间的维数。

行最简阶梯矩阵 Reduced row echelon form(rref)

U\rightarrow R继续消元使主元位置变为1,主元列除了主元元素外全变为0。

U=\begin{bmatrix} 1 &2 &2 &2 \\ 0&0 &2 &4 \\ 0 &0 &0 &0 \end{bmatrix}\rightarrow\begin{bmatrix} 1 &2 &0 &-2 \\ 0&0 &2 &4 \\ 0&0 &0 &0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 &2 &0 &-2 \\ 0& 0 &1 &2 \\ 0&0 &0 & 0 \end{bmatrix}=R

再通过列交换将主元列集中在左侧,从而在左上角形成一个单位矩阵,如下:

 

 

 

发布了9 篇原创文章 · 获赞 0 · 访问量 101
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 游动-白 设计师: 上身试试

分享到微信朋友圈

×

扫一扫,手机浏览