文章目录
RabbitMQ 安装实战教程
1.概述
1.1 mq概述
MQ(Message Quene) : 翻译为消息队列,通过典型的生产者和消费者模型,生产者不断向消息队列中生产消息,消费者不断的从队列中获取消息。因为消息的生产和消费都是异步的,而且只关心消息的发送和接收,没有业务逻辑的侵入,轻松的实现系统间解耦。别名为消息中间件通过利用高效可靠的消息传递机制进行平台无关的数据交流,并基于数据通信来进行分布式系统的集成。
1.2 mq类型
| mq产品 | 简介 |
|---|---|
| ActiveMQ | ActiveMQ 是Apache出品,最流行的,能力强劲的开源消息总线。它是一个完全支持JMS规范的的消息中间件。丰富的API,多种集群架构模式让ActiveMQ在业界成为老牌的消息中间件,在中小型企业颇受欢迎! |
| Kafka | Kafka是LinkedIn开源的分布式发布-订阅消息系统,目前归属于Apache顶级项目。Kafka主要特点是基于Pull的模式来处理消息消费,追求高吞吐量,一开始的目的就是用于日志收集和传输。0.8版本开始支持复制,不支持事务,对消息的重复、丢失、错误没有严格要求,适合产生大量数据的互联网服务的数据收集业务。 |
| RocketMQ | RocketMQ是阿里开源的消息中间件,它是纯Java开发,具有高吞吐量、高可用性、适合大规模分布式系统应用的特点。RocketMQ思路起源于Kafka,但并不是Kafka的一个Copy,它对消息的可靠传输及事务性做了优化,目前在阿里集团被广泛应用于交易、充值、流计算、消息推送、日志流式处理、binglog分发等场景。 |
| RabbitMQ | RabbitMQ是使用Erlang语言开发的开源消息队列系统,基于AMQP协议来实现。AMQP的主要特征是面向消息、队列、路由(包括点对点和发布/订阅)、可靠性、安全。AMQP协议更多用在企业系统内对数据一致性、稳定性和可靠性要求很高的场景,对性能和吞吐量的要求还在其次。 |
总结:RabbitMQ比Kafka可靠,Kafka更适合IO高吞吐的处理,一般应用在大数据日志处理或对实时性(少量延迟),可靠性(少量丢数据)要求稍低的场景使用,比如ELK日志收集。
1.3 RabbitMQ 概述
官网: https://www.rabbitmq.com/
官方教程: https://www.rabbitmq.com/#getstarted
基于
AMQP协议,erlang语言开发,是部署最广泛的开源消息中间件,是最受欢迎的开源消息中间件之一。
AMQP 协议
AMQP(advanced message queuing protocol)`在2003年时被提出,最早用于解决金融领不同平台之间的消息传递交互问题。顾名思义,AMQP是一种协议,更准确的说是一种binary wire-level protocol(链接协议)。这是其和JMS的本质差别,AMQP不从API层进行限定,而是直接定义网络交换的数据格式。这使得实现了AMQP的provider天然性就是跨平台的。以
下是AMQP协议模型:AMQP介绍

2.安装RabbitMQ
2.1 mac 安装
(1)安装brew
brew 是MacOS上的包管理工具,可以简化 macOS 和 Linux 操作系统上软件的安装。
brew安装命令:
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
如果安装brew遇到:
Failed to connect to raw.githubusercontent.com port 443: Connection refused
可以用国内镜像:
/bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)"

安装完成后可以通过brew命令查看是否安装成功:

(2)安装RabbitMQ
brew install rabbitmq

(3)启动服务
命令:rabbitmq-server

(4)访问web管理界面
URL:http://127.0.0.1:15672/
username: guest
password: guest

2.2 centos安装
(1) 下载
官网下载地址: https://www.rabbitmq.com/download.html

(2)将rabbitmq安装包上传到linux系统中

(3)安装Erlang依赖包
rpm -ivh erlang-22.0.7-1.el7.x86_64.rpm
(4)安装RabbitMQ安装包(需要联网)
yum install -y rabbitmq-server-3.7.18-1.el7.noarch.rpm
注意:默认安装完成后配置文件模板在:/usr/share/doc/rabbitmq-server-3.7.18/rabbitmq.config.example目录中,需要将配置文件复制到/etc/rabbitmq/目录中,并修改名称为rabbitmq.config
(5)复制配置文件
cp /usr/share/doc/rabbitmq-server-3.7.18/rabbitmq.config.example/etc/rabbitmq/rabbitmq.config
(6)修改配置文件(参见下图:)
vim /etc/rabbitmq/rabbitmq.config

将上图中配置文件中红色部分去掉%%,以及最后的,逗号 修改为下图:

(7)启动rabbitmq中的插件管理
rabbitmq-plugins enable rabbitmq_management
(8)启动RabbitMQ的服务
systemctl start rabbitmq-server
启动:systemctl start rabbitmq-server
重启:systemctl restart rabbitmq-server
停止服务:systemctl stop rabbitmq-server
(9)访问web管理界面
URL:http://127.0.0.1:15672/
username: guest
password: guest
2.3 RabbitMQ 管理命令行
1.服务启动相关
systemctl start|restart|stop|status rabbitmq-server
2.管理命令行 用来在不使用web管理界面情况下命令操作RabbitMQ
rabbitmqctl help可以查看更多命令
3.插件管理命令行
rabbitmq-plugins enable|list|disable
3.web管理界面介绍
3.1 overview概览

connections:无论生产者还是消费者,都需要与RabbitMQ建立连接后才可以完成消息的生产和消费,在这里可以查看连接情况channels:通道,建立连接后,会形成通道,消息的投递获取依赖通道。Exchanges:交换机,用来实现消息的路由Queues:队列,即消息队列,消息存放在队列中,等待消费,消费后被移除队列。
3.2 Admin用户和虚拟主机管理
1. 添加用户

上面的Tags选项,其实是指定用户的角色,可选的有以下几个:
超级管理员(administrator)
可登陆管理控制台,可查看所有的信息,并且可以对用户,策略(policy)进行操作。监控者(monitoring)
可登陆管理控制台,同时可以查看rabbitmq节点的相关信息(进程数,内存使用情况,磁盘使用情况等)策略制定者(policymaker)
可登陆管理控制台, 同时可以对policy进行管理。但无法查看节点的相关信息(上图红框标识的部分)。普通管理者(management)
仅可登陆管理控制台,无法看到节点信息,也无法对策略进行管理。其他
无法登陆管理控制台,通常就是普通的生产者和消费者。
2. 创建虚拟主机
虚拟主机
为了让各个用户可以互不干扰的工作,RabbitMQ添加了虚拟主机(Virtual Hosts)的概念。其实就是一个独立的访问路径,不同用户使用不同路径,各自有自己的队列、交换机,互相不会影响。

3. 绑定虚拟主机和用户


4.RabbitMQ入门程序
RebbitMQ官方教程:https://www.rabbitmq.com/getstarted.html

RebbitMQ提供了7种消息模型:
Hello Word:直连Work queues:任务模型Publish/Subscribe:发布订阅Routing:路由Topics:通配符路由RPC:远程调用Publisher Confirms
好了,让我们新建工程开始入门吧,首先需要引入依赖:
<dependency>
<groupId>com.rabbitmq</groupId>
<artifactId>amqp-client</artifactId>
<version>5.7.2</version>
</dependency>
4.1 Hello Word

在上图的模型中,有以下概念:
- P:生产者,也就是要发送消息的程序
- C:消费者:消息的接受者,会一直等待消息到来。
- queue:消息队列,图中红色部分。类似一个邮箱,可以缓存消息;生产者向其中投递消息,消费者从其中取出消息。
1. 生产者
//创建连接工厂
ConnectionFactory connectionFactory = new ConnectionFactory();
connectionFactory.setHost("127.0.0.1);
connectionFactory.setPort(5672);
connectionFactory.setUsername("ems");
connectionFactory.setPassword("123");
connectionFactory.setVirtualHost("/ems");
Connection connection = connectionFactory.newConnection();
//创建通道
Channel channel = connection.createChannel();
//参数1: 是否持久化 参数2:是否独占队列 参数3:是否自动删除 参数4:其他属性
channel.queueDeclare("hello",true,false,false,null);
channel.basicPublish("","hello", null,"hello rabbitmq".getBytes());
channel.close();
connection.close();
2. 消费者
//创建连接工厂
ConnectionFactory connectionFactory = new ConnectionFactory();
connectionFactory.setHost("127.0.0.1");
connectionFactory.setPort(5672);
connectionFactory.setUsername("ems");
connectionFactory.setPassword("123");
connectionFactory.setVirtualHost("/ems");
Connection connection = connectionFactory.newConnection();
Channel channel = connection.createChannel();
channel.queueDeclare("hello", true, false, false, null);
channel.basicConsume("hello",true,new DefaultConsumer(channel){
@Override
public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties, byte[] body) throws IOException {
System.out.println(new String(body));
}
});
3. 参数说明
channel.queueDeclare("hello",true,false,false,null);
- ‘参数1’:用来声明通道对应的队列
- ‘参数2’:用来指定是否持久化队列
- ‘参数3’:用来指定是否独占队列
- ‘参数4’:用来指定是否自动删除队列
- ‘参数5’:对队列的额外配置
/**
* Declare a queue
* @see com.rabbitmq.client.AMQP.Queue.Declare
* @see com.rabbitmq.client.AMQP.Queue.DeclareOk
* @param queue the name of the queue
* @param durable true if we are declaring a durable queue (the queue will survive a server restart)
* @param exclusive true if we are declaring an exclusive queue (restricted to this connection)
* @param autoDelete true if we are declaring an autodelete queue (server will delete it when no longer in use)
* @param arguments other properties (construction arguments) for the queue
* @return a declaration-confirm method to indicate the queue was successfully declared
* @throws java.io.IOException if an error is encountered
*/
Queue.DeclareOk queueDeclare(String queue, boolean durable, boolean exclusive, boolean autoDelete,
Map<String, Object> arguments) throws IOException;
4.2 work quene
Work queues,也被称为(Task queues),任务模型。当消息处理比较耗时的时候,可能生产消息的速度会远远大于消息的消费速度。长此以往,消息就会堆积越来越多,无法及时处理。此时就可以使用work 模型:让多个消费者绑定到一个队列,共同消费队列中的消息。队列中的消息一旦消费,就会消失,因此任务是不会被重复执行的。

角色:
- P:生产者:任务的发布者
- C1:消费者-1,领取任务并且完成任务,假设完成速度较慢
- C2:消费者-2:领取任务并完成任务,假设完成速度快
1.生产者
channel.queueDeclare("hello", true, false, false, null);
for (int i = 0; i < 10; i++) {
channel.basicPublish("", "hello", null, (i+"====>:我是消息").getBytes());
}
2.消费者-1
channel.queueDeclare("hello",true,false,false,null);
channel.basicConsume("hello",true,new DefaultConsumer(channel){
@Override
public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties, byte[] body) throws IOException {
System.out.println("消费者1: "+new String(body));
}
});
3.消费者-2
channel.queueDeclare("hello",true,false,false,null);
channel.basicConsume("hello",true,new DefaultConsumer(channel){
@Override
public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties, byte[] body) throws IOException {
try {
Thread.sleep(1000); //处理消息比较慢 一秒处理一个消息
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("消费者2: "+new String(body));
}
});
4.测试结果
消费者-1:
消费者1: 0====>:我是消息
消费者1: 2====>:我是消息
消费者1: 4====>:我是消息
消费者1: 6====>:我是消息
消费者1: 8====>:我是消息
消费者-2:
消费者2: 1====>:我是消息
消费者2: 3====>:我是消息
消费者2: 5====>:我是消息
消费者2: 7====>:我是消息
消费者2: 9====>:我是消息
从运行结果可以看出,即使消费者-2执行比较慢,但消息还是被平均地分配到消费者-1和消费者-2,这种方式在实际环境中是不推荐的,我们应该让消息处理快的消费者多处理。
5.消息自动确认机制
- 设置通道一次只能消费一个消息
- 关闭消息的自动确认,开启手动确认消息
channel.basicQos(1);//一次只接受一条未确认的消息
//参数2:关闭自动确认消息
channel.basicConsume("hello",false,new DefaultConsumer(channel){
@Override
public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties, byte[] body) throws IOException {
System.out.println("消费者1: "+new String(body));
channel.basicAck(envelope.getDeliveryTag(),false);//手动确认消息
}
});
测试结果:
消费者2: 1====>:我是消息
消费者2: 2====>:我是消息
消费者2: 3====>:我是消息
消费者2: 4====>:我是消息
消费者2: 5====>:我是消息
消费者2: 6====>:我是消息
消费者2: 7====>:我是消息
消费者2: 8====>:我是消息
消费者2: 9====>:我是消息
消费者1: 0====>:我是消息
4.3 Publish/Subscribe)

在广播模式下,消息发送流程是这样的:
- 可以有多个消费者
- 每个消费者有自己的queue(队列)
- 每个队列都要绑定到Exchange(交换机)
- 生产者发送的消息,只能发送到交换机,交换机来决定要发给哪个队列,生产者无法决定。
- 交换机把消息发送给绑定过的所有队列
- 队列的消费者都能拿到消息。实现一条消息被多个消费者消费
- 生产者
//声明交换机
channel.exchangeDeclare("logs","fanout");//广播 一条消息多个消费者同时消费
//发布消息
channel.basicPublish("logs","",null,"hello".getBytes());
- 消费者-1
//绑定交换机
channel.exchangeDeclare("logs","fanout");
//创建临时队列
String queue = channel.queueDeclare().getQueue();
//将临时队列绑定exchange
channel.queueBind(queue,"logs","");
//处理消息
channel.basicConsume(queue,true,new DefaultConsumer(channel){
@Override
public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties, byte[] body) throws IOException {
System.out.println("消费者1: "+new String(body));
}
});
- 消费者-2
//绑定交换机
channel.exchangeDeclare("logs","fanout");
//创建临时队列
String queue = channel.queueDeclare().getQueue();
//将临时队列绑定exchange
channel.queueBind(queue,"logs","");
//处理消息
channel.basicConsume(queue,true,new DefaultConsumer(channel){
@Override
public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties, byte[] body) throws IOException {
System.out.println("消费者2: "+new String(body));
}
});
- 消费者-3
//绑定交换机
channel.exchangeDeclare("logs","fanout");
//创建临时队列
String queue = channel.queueDeclare().getQueue();
//将临时队列绑定exchange
channel.queueBind(queue,"logs","");
//处理消息
channel.basicConsume(queue,true,new DefaultConsumer(channel){
@Override
public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties, byte[] body) throws IOException {
System.out.println("消费者3: "+new String(body));
}
});
测试结果:
消费者-1:
消费者1: hello
消费者-2:
消费者2: hello
消费者-3:
消费者3: hello
4.4 Routing
4.4.1 Routing -订阅模型-Direct
在Fanout模式中,一条消息,会被所有订阅的队列都消费。但是,在某些场景下,我们希望不同的消息被不同的队列消费。这时就要用到Direct类型的Exchange。
在Direct模型下:
- 队列与交换机的绑定,不能是任意绑定了,而是要指定一个
RoutingKey(路由key) - 消息的发送方在 向 Exchange发送消息时,也必须指定消息的
RoutingKey。 - Exchange不再把消息交给每一个绑定的队列,而是根据消息的
Routing Key进行判断,只有队列的Routingkey与消息的Routing key完全一致,才会接收到消息
流程:

图解:
- P:生产者,向Exchange发送消息,发送消息时,会指定一个routing key。
- X:Exchange(交换机),接收生产者的消息,然后把消息递交给 与routing key完全匹配的队列
- C1:消费者,其所在队列指定了需要routing key 为 error 的消息
- C2:消费者,其所在队列指定了需要routing key 为 info、error、warning 的消息
- 生产者
//声明交换机 参数1:交换机名称 参数2:交换机类型 基于指令的Routing key转发
channel.exchangeDeclare("logs_direct","direct");
String key = "";
//发布消息
channel.basicPublish("logs_direct",key,null,("指定的route key"+key+"的消息").getBytes());
2.消费者-1
//声明交换机
channel.exchangeDeclare("logs_direct","direct");
//创建临时队列
String queue = channel.queueDeclare().getQueue();
//绑定队列和交换机
channel.queueBind(queue,"logs_direct","error");
channel.queueBind(queue,"logs_direct","info");
channel.queueBind(queue,"logs_direct","warn");
//消费消息
channel.basicConsume(queue,true,new DefaultConsumer(channel){
@Override
public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties, byte[] body) throws IOException {
System.out.println("消费者1: "+new String(body));
}
});
3.消费者-2
//声明交换机
channel.exchangeDeclare("logs_direct","direct");
//创建临时队列
String queue = channel.queueDeclare().getQueue();
//绑定队列和交换机
channel.queueBind(queue,"logs_direct","error");
//消费消息
channel.basicConsume(queue,true,new DefaultConsumer(channel){
@Override
public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties, byte[] body) throws IOException {
System.out.println("消费者2: "+new String(body));
}
});
4.测试生产者发送Route key为error的消息时


5.测试生产者发送Route key为info的消息时


4.4.2 Routing -订阅模型-Topic
Topic类型的Exchange与Direct相比,都是可以根据RoutingKey把消息路由到不同的队列。只不过Topic类型Exchange可以让队列在绑定Routing key的时候使用通配符!这种模型Routingkey一般都是由一个或多个单词组成,多个单词之间以”.”分割,例如:item.insert

- * (star) can substitute for exactly one word. 匹配不多不少恰好1个词
- # (hash) can substitute for zero or more words. 匹配一个或多个词
audit.# 匹配audit.irs.corporate或者 audit.irs 等
audit.* 只能匹配 audit.irs
1.生产者
//生命交换机和交换机类型 topic 使用动态路由(通配符方式)
channel.exchangeDeclare("topics","topic");
String routekey = "user.save";//动态路由key
//发布消息
channel.basicPublish("topics",routekey,null,("这是路由中的动态订阅模型,route key: ["+routekey+"]").getBytes());
2.消费者-1
Routing Key中使用*通配符方式
//声明交换机
channel.exchangeDeclare("topics","topic");
//创建临时队列
String queue = channel.queueDeclare().getQueue();
//绑定队列与交换机并设置获取交换机中动态路由
channel.queueBind(queue,"topics","user.*");
//消费消息
channel.basicConsume(queue,true,new DefaultConsumer(channel){
@Override
public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties, byte[] body) throws IOException {
System.out.println("消费者1: "+new String(body));
}
});
3.消费者-2
Routing Key中使用#通配符方式
//声明交换机
channel.exchangeDeclare("topics","topic");
//创建临时队列
String queue = channel.queueDeclare().getQueue();
//绑定队列与交换机并设置获取交换机中动态路由
channel.queueBind(queue,"topics","user.#");
//消费消息
channel.basicConsume(queue,true,new DefaultConsumer(channel){
@Override
public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties, byte[] body) throws IOException {
System.out.println("消费者2: "+new String(body));
}
});
4.测试结果


5.SpringBoot中使用RabbitMQ
5.1 环境搭建
(1)Spring boot依赖
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.3.0.RELEASE</version>
</parent>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
(2) RebbitMq依赖
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-amqp</artifactId>
</dependency>
(3)yaml配置
spring:
application:
name: springboot_rabbitmq
rabbitmq:
host: 127.0.0.1
port: 5672
username: hello
password: hello
virtual-host: hello
5.2 hello world模型
1.生产者
@RestController
public class HelloPublish {
@Autowired
private RabbitTemplate rabbitTemplate;
// http://localhost:8080/hello
@RequestMapping("hello")
public String testHello(){
rabbitTemplate.convertAndSend("hello","hello world");
return "hello";
}
}
2.消费者
@Component
@RabbitListener(queuesToDeclare = @Queue("hello"))
public class HelloCustomer {
@RabbitHandler
public void receive1(String message){
System.out.println("message = " + message);
}
}
5.3 work模型
1.生产者
@Autowired
private RabbitTemplate rabbitTemplate;
// http://localhost:8080/work
@RequestMapping("work")
public String testHello(){
rabbitTemplate.convertAndSend("work","work work");
return "work";
}
2.消费者
@Component
public class WorkCustomer {
@RabbitListener(queuesToDeclare = @Queue("work"))
public void receive1(String message){
System.out.println("work message1 = " + message);
}
@RabbitListener(queuesToDeclare = @Queue("work"))
public void receive2(String message){
System.out.println("work message2 = " + message);
}
}
说明:默认在Spring AMQP实现中Work这种方式就是公平调度,如果需要实现能者多劳需要额外配置
5.4 广播模型
1.生产者
@Autowired
private RabbitTemplate rabbitTemplate;
// http://localhost:8080/fanout
@RequestMapping("fanout")
public String testHello(){
rabbitTemplate.convertAndSend("logs","","这是日志广播");
return "fanout";
}
2.消费者
@Component
public class FanoutCustomer {
@RabbitListener(bindings = @QueueBinding(
value = @Queue,
exchange = @Exchange(name="logs",type = "fanout")
))
public void receive1(String message){
System.out.println("message1 = " + message);
}
@RabbitListener(bindings = @QueueBinding(
value = @Queue, //创建临时队列
exchange = @Exchange(name="logs",type = "fanout") //绑定交换机类型
))
public void receive2(String message){
System.out.println("message2 = " + message);
}
}
5.5 Route 路由模型
1.生产者
@RestController
public class DirectPublish {
@Autowired
private RabbitTemplate rabbitTemplate;
// http://localhost:8080/direct
@RequestMapping("direct")
public String testHello(){
rabbitTemplate.convertAndSend("directs","error","error 的日志信息");
return "direct";
}
}
2.消费者
@Component
public class DirectCustomer {
@RabbitListener(bindings ={
@QueueBinding(
value = @Queue(),
key={"info","error"},
exchange = @Exchange(type = "direct",name="directs")
)})
public void receive1(String message){
System.out.println("message1 = " + message);
}
@RabbitListener(bindings ={
@QueueBinding(
value = @Queue(),
key={"error"},
exchange = @Exchange(type = "direct",name="directs")
)})
public void receive2(String message){
System.out.println("message2 = " + message);
}
}
5.6 Topic 动态路由
1.生产者
@RestController
public class TopicPublish {
@Autowired
private RabbitTemplate rabbitTemplate;
// http://localhost:8080/topics
@RequestMapping("topics")
public String testHello(){
rabbitTemplate.convertAndSend("topics","user.save.findAll","user.save.findAll 的消息");
return "topics";
}
}
2.消费者
@Component
public class TopicCustomer {
@RabbitListener(bindings = {
@QueueBinding(
value = @Queue,
key = {"user.*"},
exchange = @Exchange(type = "topic",name = "topics")
)
})
public void receive1(String message){
System.out.println("message1 = " + message);
}
@RabbitListener(bindings = {
@QueueBinding(
value = @Queue,
key = {"user.#"},
exchange = @Exchange(type = "topic",name = "topics")
)
})
public void receive2(String message){
System.out.println("message2 = " + message);
}
}
6.MQ的应用场景
6.1 异步处理
场景说明:用户注册后,需要发注册邮件和注册短信,传统的做法有两种 1.串行的方式 2.并行的方式
串行方式:将注册信息写入数据库后,发送注册邮件,再发送注册短信,以上三个任务全部完成后才返回给客户端。 这有一个问题是,邮件,短信并不是必须的,它只是一个通知,而这种做法让客户端等待没有必要等待的东西.

并行方式:将注册信息写入数据库后,发送邮件的同时,发送短信,以上三个任务完成后,返回给客户端,并行的方式能提高处理的时间。

消息队列:假设三个业务节点分别使用50ms,串行方式使用时间150ms,并行使用时间100ms。虽然并行已经提高的处理时间,但是,前面说过,邮件和短信对我正常的使用网站没有任何影响,客户端没有必要等着其发送完成才显示注册成功,应该是写入数据库后就返回.消息队列: 引入消息队列后,把发送邮件,短信不是必须的业务逻辑异步处理

由此可以看出,引入消息队列后,用户的响应时间就等于写入数据库的时间+写入消息队列的时间(可以忽略不计),引入消息队列后处理后,响应时间是串行的3倍,是并行的2倍。
6.2 应用解耦

订单系统:用户下单后,订单系统完成持久化处理,将消息写入消息队列,返回用户订单下单成功。库存系统:订阅下单的消息,获取下单消息,进行库操作。 就算库存系统出现故障,消息队列也能保证消息的可靠投递,不会导致消息丢失.
6.3 流量削峰
场景:秒杀活动,一般会因为流量过大,导致应用挂掉,为了解决这个问题,一般在应用前端加入消息队列。
作用:
1.可以控制活动人数,超过此一定阀值的订单直接丢弃
2.可以缓解短时间的高流量压垮应用(应用程序按自己的最大处理能力获取订单)

1.用户的请求,服务器收到之后,首先写入消息队列,加入消息队列长度超过最大值,则直接抛弃用户请求或跳转到错误页面.
2.秒杀业务根据消息队列中的请求信息,再做后续处理.

被折叠的 条评论
为什么被折叠?



