技术学习分享
码龄7年
关注
提问 私信
  • 博客:404,238
    社区:46
    404,284
    总访问量
  • 2,102
    原创
  • 1,693
    排名
  • 1,248
    粉丝
  • 学习成就

个人简介:现就职于某世界500强外企团队成员基本来自GoogleMirosoftFaceBookNetFlexAlibabaTencentSAP 团队基本都是985或者国外留学经历Top500 SAP&DecathlonFranceSeniorSoftwareEngineer&Researchanddevelopment

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:新加坡
  • 目前就职: Ford汽车金融
  • 加入CSDN时间: 2017-09-28
博客简介:

weixin_40426261的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    1
    当前总分
    0
    当月
    51
个人成就
  • 获得1,932次点赞
  • 内容获得125次评论
  • 获得1,816次收藏
创作历程
  • 147篇
    2024年
  • 716篇
    2023年
  • 939篇
    2022年
  • 64篇
    2021年
  • 12篇
    2020年
  • 231篇
    2019年
成就勋章
TA的专栏
  • GPU芯片学习待续
    43篇
  • 数字孪生
    98篇
  • ArchiGisSupermapGuassDB
    6篇
  • 软件技术研究
    7篇
  • 数据库技术研究
    1篇
  • 监控系统研究
    24篇
  • 学习方法研究
    12篇
  • 自动驾驶大数据人工智能TensorRT创业
    1篇
  • Aliyun/EMR/DataWorks
    77篇
  • 数字孪生 Web3.0 Ominiverse创业
    9篇
  • unity3D
    5篇
  • 高等数学研究
    1篇
  • 芯片技术研究
    12篇
  • web3.0技术研究
    8篇
  • 智慧眼睛解决方案待续5
    8篇
  • 智慧交通自动驾驶解决方案待续6
    6篇
  • unreal
  • 智慧能源解决方案待续4
  • 智慧能源解决方案待续3
  • 智慧能源解决方案待续2
  • 智慧能源解决方案待续1
  • 智慧灯塔解决方案待续
  • 智慧油田解决方案待续
  • 智慧工厂行业解决方案待续
  • 智慧军工行业解决方案待续
  • 智慧水利行业解决方案待续
  • 智慧交通解决方案待续
  • 智慧医疗行业解决方案待续
  • 智慧电力行业解决方案待续
  • 智慧城市解决方案待续
  • 能源行解决方案待续
  • Hudi 数据湖分享待续
  • 前沿技术分享待续
  • AI深度学习卷积神经网络GPUDPU向量并行计算机
  • 架构师训练营
  • 全球架构师峰会随笔待续
  • 微软架构师面试总结待续
  • 英伟达架构师面试总结待续
  • Tesla架构师面试总结待续
  • 阿里架构师面试总结
  • Ebay架构师面试总结
  • Amazon解决方案架构师面试总结
  • STABLEDIFFUTIONMIDJOURNY
  • ChatGPTAIGC
  • 计算机操作系统研究
    1篇
  • ArgoCDTekonTravisCI技术学习待续
    5篇
  • CephXds协议Proxyless协议 Envoy
    1篇
  • Database专栏
    1篇
  • PHP
    4篇
  • JVM
    3篇
  • 股票交易金融市场研究
    176篇
  • Google 微软 亚马逊 阿里 腾讯 字节跳动面试总结
    353篇
  • Google量子计算研究
    38篇
  • 宇宙探索人类文明起源研究
    84篇
  • 金融学市场分析研究
    125篇
  • 数学学习与研究
    82篇
  • 机器学习深度学习研究
    5篇
  • 管理学研究
    36篇
  • GoogleDeepMind人工智能科学研究
    1篇
  • 超级计算步研究
    1篇
  • 物理学学习与研究
    5篇
  • 英语学习与研究
    1篇
  • 律师基本法研究
    1篇
  • ARVR虚拟化世界研究
    29篇
  • 经济学市场分析研究
    3篇
  • AIOT学习与研究
    3篇
  • 商业战略项目技术管理工商管理研究
    40篇
  • 国外论文阅读paper研究
    4篇
  • 数据存储Storage研究
    3篇
  • 微服务架构设计研究
    5篇
  • 项目实战专题研究
    7篇
  • 推荐系统人工智能机器学习VSLIAM研究
    7篇
  • 汇编/C/C++/编译器原理/硬件/芯片/intel指令集
    23篇
  • 微服务专题研究
    13篇
  • 分布式框架专题研究
    25篇
  • 源码框架研究
    17篇
  • 并发编程研究
    16篇
  • 性能调优专题研究
    23篇
  • Java研究
    269篇
  • 大数据/Scala研究
    31篇
  • Goland研究
    8篇
  • Rust研究
    2篇
  • 数据结构与算法leetcode研究
    11篇
  • GoogleMicrosoft英伟达intel技术文章总结
    4篇
  • FacebookMeta元宇宙研究
    2篇
  • 自动驾驶研究
    3篇
  • 数据湖hudi iceberg dletalake
    5篇
  • Twitter研究
    2篇
  • 马斯克之硬核AI软件研发工程师研究
    2篇
  • 产品管理与设计原型研究
    2篇
  • GIS 3维建模研究
    3篇
  • QconArchiSummitGopherChina研究
    1篇
  • TensorflowKerasMxnetPytorch研究
    4篇
  • KubernetesCKA认证证书与资料研究
    6篇
  • AndoridKotlinIOSFlutter研究
    9篇
  • 阿里云亚马逊云微软云CKA认证研究
    3篇
  • Python AI Machilearning 研究
    3篇
  • C#/.NETCore IOT 研究
    2篇
  • 前端技术研究
    7篇
  • 设计模式和PHP研究
    7篇
兴趣领域 设置
  • Python
    pythondjangoflaskscikit-learnpyqtpandasweb3.py
  • Java
    javajettydubbosentineljava-consuljava-zookeeperjava-activemqjava-rocketmqsdkmanguava
  • 编程语言
    pythonjavaphpc++c语言javascriptc#rubyqtactionscriptluar语言swiftscalabashbatchtypescripterlangobjective-cjulia开发语言kotlingolangmatlabrust青少年编程
  • 数据结构与算法
    算法数据结构线性回归链表贪心算法动态规划排序算法kmeansleetcode决策树最小二乘法b树模拟退火算法散列表随机森林支持向量机启发式算法逻辑回归推荐算法宽度优先广度优先深度优先迭代加深图搜索算法爬山算法近邻算法均值算法预编码算法霍夫曼树剪枝哈希算法柔性数组skiplisthash-indexsstablelsm-treeinverted-indexsuffix-treer-tree
  • 后端
    scala
  • HarmonyOS
    华为harmonyos华为云
  • 微软技术
    sqlc#.netwpfmfcsharepointwindowslinqasp.netvisual studiomicrosoftazuretypescriptvscodexamarinhololenssqlservermssql.netcoreedgexbox
  • 设计模式
    uml单例模式开闭原则命令模式代理模式桥接模式观察者模式访问者模式迭代器模式简单工厂模式里氏替换原则依赖倒置原则单一职责原则接口隔离原则迪米特法则合成复用原则原型模式工厂方法模式抽象工厂模式建造者模式适配器模式装饰器模式外观模式享元模式组合模式模板方法模式策略模式责任链模式状态模式中介者模式备忘录模式解释器模式设计模式
创作活动更多

HarmonyOS开发者社区有奖征文来啦!

用文字记录下您与HarmonyOS的故事。参与活动,还有机会赢奖,快来加入我们吧!

0人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

tansfomer模型压缩与加速

Transformer模型以其强大的性能在许多自然语言处理任务中广泛应用,但由于其庞大的参数量和高计算复杂度,模型压缩与加速成为关键研究方向。
原创
发布博客 22 小时前 ·
146 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

transfomer架构优化与改进

Transformer架构自其引入以来,因其卓越的性能和灵活性,成为许多自然语言处理任务的基础。然而,由于其计算复杂度和内存需求,研究者们不断探索优化和改进Transformer架构的方法,以提高效率和性能。
原创
发布博客 22 小时前 ·
164 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

Transformer 架构技术总结

Transformer架构是深度学习领域的一项重大突破,特别在自然语言处理(NLP)任务中表现出色。自从2017年由Vaswani等人提出以来,Transformer架构凭借其高效的训练能力和卓越的性能,在多个领域得到了广泛应用。以下是对Transformer架构技术的详细总结。
原创
发布博客 22 小时前 ·
184 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

大模型的架构技术总结

大模型的架构技术主要基于深度学习中的Transformer架构,这种架构以其强大的表示能力和灵活的结构,成为大规模自然语言处理模型的基础。在总结大模型的架构技术时,我们主要关注它们的设计原则、关键组件和不同的变体。通过不断的优化和创新,Transformer及其变体将继续推动AI技术的发展,并在更多领域展现其强大的应用潜力。完全并行化:与RNN不同,Transformer不依赖于序列顺序,支持并行化计算,大幅提高训练速度。剪枝与量化:通过剪枝不重要的参数和对模型进行量化,减少模型大小和推理时间。
原创
发布博客 22 小时前 ·
92 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

大模型技术总结

大模型(Large Models)技术,尤其是在自然语言处理(NLP)领域,以其强大的生成和理解能力受到了广泛关注。大模型技术在推动AI能力提升方面具有重要的作用,尽管面临一些挑战,但其在多领域的应用前景广阔。强大的泛化能力:大模型在多个任务和领域表现出色,具备良好的迁移学习能力。能耗问题:大模型的训练和使用消耗大量能源,引发对环保和可持续性的关注。数据质量:数据的多样性和质量对模型性能至关重要,影响模型的泛化能力。偏见与公平性:大模型可能继承训练数据中的偏见,影响决策的公平性。
原创
发布博客 22 小时前 ·
252 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

机器学习的关键步骤 技术总结

机器学习的关键步骤涉及从数据准备到模型部署的一系列过程。这些步骤是确保机器学习项目成功的基础。
原创
发布博客 22 小时前 ·
276 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏

机器学习技术总结

机器学习技术总结
原创
发布博客 22 小时前 ·
252 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

RNN技术总结

RNN技术总结
原创
发布博客 前天 07:49 ·
206 阅读 ·
8 点赞 ·
0 评论 ·
2 收藏

深度学习中的不同模型架构

深度学习中的不同模型架构
原创
发布博客 前天 07:46 ·
291 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

深度学习技术总结

深度学习是一种机器学习方法,依赖于人工神经网络,尤其是多层神经网络结构,来模拟人脑的功能进行数据分析和模式识别。深度学习模型在图像识别、自然语言处理、语音识别等领域取得了显著的成功。以下是对深度学习模型技术的详细总结。
原创
发布博客 前天 07:45 ·
254 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

Tensorflow技术总结

TensorFlow 是由 Google Brain 团队开发的开源机器学习框架,自2015年发布以来,已成为全球最流行和最广泛使用的深度学习框架之一。TensorFlow 提供了灵活的架构,支持从研究实验到生产环境的各种应用。TensorFlow 作为开源项目,拥有庞大的用户和开发者社区。社区贡献者也积极开发插件和扩展,使得 TensorFlow 的功能不断丰富和完善。TensorFlow Model Garden:提供各种预训练模型和教程的集合。TensorFlow Hub:共享和重用预训练模型的库。
原创
发布博客 前天 07:42 ·
284 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

Google 下一代 AI 技术

谷歌在人工智能领域一直处于前沿,不断推动下一代AI技术的发展。随着研究的继续,谷歌的下一代AI技术可能会在更多领域产生深远影响,包括教育、交通、制造业等,助力解决复杂的全球性问题。
原创
发布博客 前天 07:40 ·
165 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

MAINFRAME技术总结

随着时间的推移,Mainframe 不断演变,成为企业和政府机构处理关键任务应用的核心平台。Mainframe,中文通常称为大型机,是一种高性能的计算机系统,专用于处理大量数据和复杂计算任务。Mainframe 可以运行传统的工作负载(如 COBOL 程序)和现代工作负载(如 Java 和 Linux 应用程序),实现新旧系统的无缝集成。大型机提供高级别的安全功能,包括数据加密、访问控制和审计追踪,确保关键数据的安全性和合规性。支持大规模并发用户和任务处理,是大企业和组织日常运营的核心。
原创
发布博客 2024.11.01 ·
280 阅读 ·
6 点赞 ·
0 评论 ·
5 收藏

R技术总结

如今,R 拥有丰富的功能和庞大的用户社区,成为统计分析和数据科学领域的重要工具。R 提供灵活的数据操作工具,如 dplyr 和 data.table,支持数据的过滤、排序、聚合、连接等操作,使得大规模数据处理变得高效。R 提供了广泛的统计分析功能,从基本的描述统计到复杂的多变量分析和回归模型。R 提供了大量的金融分析工具和模型支持。学习曲线:对于没有编程背景的用户,R 的学习曲线可能较陡,特别是对于复杂的编程和分析任务。丰富的扩展包:R 的扩展包涵盖了各个领域的特定需求,使得 R 可以应用于广泛的场景。
原创
发布博客 2024.11.01 ·
290 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏

SAS 技术总结

SAS 的成功在于其强大的数据处理能力、灵活的编程环境和广泛的统计分析功能。总结起来,SAS 是一个功能强大且广泛应用的数据分析工具,适合需要可靠性、准确性和全面性的企业和机构。尽管面临一些挑战,SAS 通过其持续的创新和强大的支持网络,仍然是数据分析领域的重要参与者。SAS 提供全面的统计分析工具,包括描述性统计、回归分析、方差分析、时间序列分析等,适用于不同复杂度的统计任务。强大的社区和支持:SAS 拥有庞大的用户社区和完善的技术支持,提供丰富的学习资源和文档。
原创
发布博客 2024.11.01 ·
313 阅读 ·
5 点赞 ·
0 评论 ·
10 收藏

ray 技术总结

随着数据量的增长和计算需求的增加,开发者面临的挑战是如何有效地利用分布式系统的计算能力来处理复杂的任务。Ray 提供了一系列开箱即用的库来支持分布式应用开发,例如用于分布式训练的 Ray Train,用于分布式数据处理的 Ray Datasets,以及用于强化学习的 RLlib。生态系统的成熟度:尽管 Ray 的生态系统正在快速发展,但与一些成熟的框架相比,某些特定领域的工具和支持可能还不够完善。集群管理:在大规模应用中,集群的配置和管理仍然是一个复杂的问题,需要经验丰富的运维团队来优化和维护。
原创
发布博客 2024.11.01 ·
327 阅读 ·
5 点赞 ·
0 评论 ·
8 收藏

clickhouse技术总结

通过数据压缩、向量化执行和高效的磁盘 I/O,ClickHouse 能够在处理大量数据时提供极高的查询性能。日志和监控分析:ClickHouse 常用于处理和分析应用程序日志和监控数据,支持高吞吐量和低延迟。ClickHouse 支持实时数据插入和分析,适用于需要立即获得分析结果的场景,如监控和日志分析。ClickHouse 支持分布式集群部署,能够处理 PB 级别的数据,适合大规模数据处理和分析。用户行为分析:在广告技术和用户行为分析中,ClickHouse 能够实时处理和分析大规模数据。
原创
发布博客 2024.11.01 ·
236 阅读 ·
6 点赞 ·
0 评论 ·
2 收藏

flink 技术总结

Flink 是一个功能强大的流处理框架,适合需要高性能、低延迟和精确处理的数据处理任务。Flink 可以与多种存储和消息系统集成,如 Apache Kafka、Hadoop、Cassandra、Elasticsearch 等,支持广泛的数据源和接收器。Flink 的核心是流处理,它将批处理视为流处理的一种特殊情况。DataStream API:用于流处理,提供丰富的操作符,包括过滤、映射、分组、连接、窗口等。Flink 支持事件时间和处理时间语义,这使得它能够处理乱序事件和提供精确的时间窗口计算。
原创
发布博客 2024.11.01 ·
121 阅读 ·
7 点赞 ·
0 评论 ·
2 收藏

Kotlin的技术优势

现代的开发工具支持:Kotlin拥有丰富的开发工具支持,包括IntelliJ IDEA等主流IDE都对Kotlin提供了良好的支持,提供了智能代码提示、重构工具等,大大提高了开发效率。互操作性:Kotlin与Java的互操作性非常强,可以在现有的Java项目中无缝使用Kotlin代码,这使得从Java到Kotlin的迁移变得容易。官方支持:Kotlin得到了Google的官方支持,在Android开发领域被推荐为首选语言,这为Kotlin的普及和未来的发展提供了强有力的背书。
原创
发布博客 2024.10.25 ·
280 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

SAS和R的区别

总的来说,SAS和R各有优势,选择哪个工具取决于具体的业务需求、预算和个人偏好。SAS和R都是强大的数据分析工具,它们在统计分析、数据挖掘、机器学习等领域有着广泛的应用。图形功能:SAS具有良好的图形支持,R的图形功能虽然强大,但需要更多的设置。数据管理:SAS提供数据清洗、转换、合并等功能,支持高效的数据存储和处理。图形和可视化:R的图形功能强大,可以创建各种静态和交互式的图表。技术支持:SAS提供专业的客户支持,而R依赖于在线社区的支持。开源和社区支持:R是开源的,拥有活跃的社区和大量的在线资源。
原创
发布博客 2024.10.25 ·
191 阅读 ·
9 点赞 ·
0 评论 ·
5 收藏
加载更多