自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2109)
  • 资源 (1)
  • 收藏
  • 关注

原创 tansfomer模型压缩与加速

Transformer模型以其强大的性能在许多自然语言处理任务中广泛应用,但由于其庞大的参数量和高计算复杂度,模型压缩与加速成为关键研究方向。

2024-11-22 16:35:05 146

原创 transfomer架构优化与改进

Transformer架构自其引入以来,因其卓越的性能和灵活性,成为许多自然语言处理任务的基础。然而,由于其计算复杂度和内存需求,研究者们不断探索优化和改进Transformer架构的方法,以提高效率和性能。

2024-11-22 16:33:55 164

原创 Transformer 架构技术总结

Transformer架构是深度学习领域的一项重大突破,特别在自然语言处理(NLP)任务中表现出色。自从2017年由Vaswani等人提出以来,Transformer架构凭借其高效的训练能力和卓越的性能,在多个领域得到了广泛应用。以下是对Transformer架构技术的详细总结。

2024-11-22 16:32:06 184

原创 大模型的架构技术总结

大模型的架构技术主要基于深度学习中的Transformer架构,这种架构以其强大的表示能力和灵活的结构,成为大规模自然语言处理模型的基础。在总结大模型的架构技术时,我们主要关注它们的设计原则、关键组件和不同的变体。通过不断的优化和创新,Transformer及其变体将继续推动AI技术的发展,并在更多领域展现其强大的应用潜力。完全并行化:与RNN不同,Transformer不依赖于序列顺序,支持并行化计算,大幅提高训练速度。剪枝与量化:通过剪枝不重要的参数和对模型进行量化,减少模型大小和推理时间。

2024-11-22 16:30:30 92

原创 大模型技术总结

大模型(Large Models)技术,尤其是在自然语言处理(NLP)领域,以其强大的生成和理解能力受到了广泛关注。大模型技术在推动AI能力提升方面具有重要的作用,尽管面临一些挑战,但其在多领域的应用前景广阔。强大的泛化能力:大模型在多个任务和领域表现出色,具备良好的迁移学习能力。能耗问题:大模型的训练和使用消耗大量能源,引发对环保和可持续性的关注。数据质量:数据的多样性和质量对模型性能至关重要,影响模型的泛化能力。偏见与公平性:大模型可能继承训练数据中的偏见,影响决策的公平性。

2024-11-22 16:28:53 252

原创 机器学习的关键步骤 技术总结

机器学习的关键步骤涉及从数据准备到模型部署的一系列过程。这些步骤是确保机器学习项目成功的基础。

2024-11-22 16:26:58 276

原创 机器学习技术总结

机器学习技术总结

2024-11-22 16:25:18 252

原创 RNN技术总结

RNN技术总结

2024-11-21 07:49:09 206

原创 深度学习中的不同模型架构

深度学习中的不同模型架构

2024-11-21 07:46:46 291

原创 深度学习技术总结

深度学习是一种机器学习方法,依赖于人工神经网络,尤其是多层神经网络结构,来模拟人脑的功能进行数据分析和模式识别。深度学习模型在图像识别、自然语言处理、语音识别等领域取得了显著的成功。以下是对深度学习模型技术的详细总结。

2024-11-21 07:45:18 254

原创 Tensorflow技术总结

TensorFlow 是由 Google Brain 团队开发的开源机器学习框架,自2015年发布以来,已成为全球最流行和最广泛使用的深度学习框架之一。TensorFlow 提供了灵活的架构,支持从研究实验到生产环境的各种应用。TensorFlow 作为开源项目,拥有庞大的用户和开发者社区。社区贡献者也积极开发插件和扩展,使得 TensorFlow 的功能不断丰富和完善。TensorFlow Model Garden:提供各种预训练模型和教程的集合。TensorFlow Hub:共享和重用预训练模型的库。

2024-11-21 07:42:22 284

原创 Google 下一代 AI 技术

谷歌在人工智能领域一直处于前沿,不断推动下一代AI技术的发展。随着研究的继续,谷歌的下一代AI技术可能会在更多领域产生深远影响,包括教育、交通、制造业等,助力解决复杂的全球性问题。

2024-11-21 07:40:08 165

原创 MAINFRAME技术总结

随着时间的推移,Mainframe 不断演变,成为企业和政府机构处理关键任务应用的核心平台。Mainframe,中文通常称为大型机,是一种高性能的计算机系统,专用于处理大量数据和复杂计算任务。Mainframe 可以运行传统的工作负载(如 COBOL 程序)和现代工作负载(如 Java 和 Linux 应用程序),实现新旧系统的无缝集成。大型机提供高级别的安全功能,包括数据加密、访问控制和审计追踪,确保关键数据的安全性和合规性。支持大规模并发用户和任务处理,是大企业和组织日常运营的核心。

2024-11-01 03:13:15 280

原创 R技术总结

如今,R 拥有丰富的功能和庞大的用户社区,成为统计分析和数据科学领域的重要工具。R 提供灵活的数据操作工具,如 dplyr 和 data.table,支持数据的过滤、排序、聚合、连接等操作,使得大规模数据处理变得高效。R 提供了广泛的统计分析功能,从基本的描述统计到复杂的多变量分析和回归模型。R 提供了大量的金融分析工具和模型支持。学习曲线:对于没有编程背景的用户,R 的学习曲线可能较陡,特别是对于复杂的编程和分析任务。丰富的扩展包:R 的扩展包涵盖了各个领域的特定需求,使得 R 可以应用于广泛的场景。

2024-11-01 03:08:47 290

原创 SAS 技术总结

SAS 的成功在于其强大的数据处理能力、灵活的编程环境和广泛的统计分析功能。总结起来,SAS 是一个功能强大且广泛应用的数据分析工具,适合需要可靠性、准确性和全面性的企业和机构。尽管面临一些挑战,SAS 通过其持续的创新和强大的支持网络,仍然是数据分析领域的重要参与者。SAS 提供全面的统计分析工具,包括描述性统计、回归分析、方差分析、时间序列分析等,适用于不同复杂度的统计任务。强大的社区和支持:SAS 拥有庞大的用户社区和完善的技术支持,提供丰富的学习资源和文档。

2024-11-01 03:07:54 313

原创 ray 技术总结

随着数据量的增长和计算需求的增加,开发者面临的挑战是如何有效地利用分布式系统的计算能力来处理复杂的任务。Ray 提供了一系列开箱即用的库来支持分布式应用开发,例如用于分布式训练的 Ray Train,用于分布式数据处理的 Ray Datasets,以及用于强化学习的 RLlib。生态系统的成熟度:尽管 Ray 的生态系统正在快速发展,但与一些成熟的框架相比,某些特定领域的工具和支持可能还不够完善。集群管理:在大规模应用中,集群的配置和管理仍然是一个复杂的问题,需要经验丰富的运维团队来优化和维护。

2024-11-01 03:07:04 327

原创 clickhouse技术总结

通过数据压缩、向量化执行和高效的磁盘 I/O,ClickHouse 能够在处理大量数据时提供极高的查询性能。日志和监控分析:ClickHouse 常用于处理和分析应用程序日志和监控数据,支持高吞吐量和低延迟。ClickHouse 支持实时数据插入和分析,适用于需要立即获得分析结果的场景,如监控和日志分析。ClickHouse 支持分布式集群部署,能够处理 PB 级别的数据,适合大规模数据处理和分析。用户行为分析:在广告技术和用户行为分析中,ClickHouse 能够实时处理和分析大规模数据。

2024-11-01 03:05:21 236

原创 flink 技术总结

Flink 是一个功能强大的流处理框架,适合需要高性能、低延迟和精确处理的数据处理任务。Flink 可以与多种存储和消息系统集成,如 Apache Kafka、Hadoop、Cassandra、Elasticsearch 等,支持广泛的数据源和接收器。Flink 的核心是流处理,它将批处理视为流处理的一种特殊情况。DataStream API:用于流处理,提供丰富的操作符,包括过滤、映射、分组、连接、窗口等。Flink 支持事件时间和处理时间语义,这使得它能够处理乱序事件和提供精确的时间窗口计算。

2024-11-01 03:04:34 121

原创 Kotlin的技术优势

现代的开发工具支持:Kotlin拥有丰富的开发工具支持,包括IntelliJ IDEA等主流IDE都对Kotlin提供了良好的支持,提供了智能代码提示、重构工具等,大大提高了开发效率。互操作性:Kotlin与Java的互操作性非常强,可以在现有的Java项目中无缝使用Kotlin代码,这使得从Java到Kotlin的迁移变得容易。官方支持:Kotlin得到了Google的官方支持,在Android开发领域被推荐为首选语言,这为Kotlin的普及和未来的发展提供了强有力的背书。

2024-10-25 13:48:30 280

原创 SAS和R的区别

总的来说,SAS和R各有优势,选择哪个工具取决于具体的业务需求、预算和个人偏好。SAS和R都是强大的数据分析工具,它们在统计分析、数据挖掘、机器学习等领域有着广泛的应用。图形功能:SAS具有良好的图形支持,R的图形功能虽然强大,但需要更多的设置。数据管理:SAS提供数据清洗、转换、合并等功能,支持高效的数据存储和处理。图形和可视化:R的图形功能强大,可以创建各种静态和交互式的图表。技术支持:SAS提供专业的客户支持,而R依赖于在线社区的支持。开源和社区支持:R是开源的,拥有活跃的社区和大量的在线资源。

2024-10-25 13:46:57 191

原创 API GEE

Apigee 是一个由 Google Cloud 提供的全方位 API 管理平台。它为企业和开发者提供了一套完整的工具和服务,用于设计、部署、管理、分析和保护 API(应用程序编程接口)。通过 Apigee,企业可以快速构建和管理 API,从而实现应用程序的集成、数据共享和业务创新。以下是关于 Apigee 的详细介绍。目录Apigee 的定义与背景Apigee 的核心功能Apigee 的架构Apigee 的优势Apigee 的应用场景Apigee 与其他 API 管理工具的对比发展趋势与

2024-07-28 08:46:16 571

原创 智能网联技术总结

它的目标是通过车与车(V2V)、车与基础设施(V2I)以及车与其他网络(V2X)的互联互通,提高交通效率、安全性和用户体验。智能网联技术通过将车辆、基础设施和云端服务连接在一起,实现信息的实时交换和智能处理,提高交通系统的安全性、效率和用户体验。智能网联技术的出现,旨在通过利用先进的通信技术和智能算法,优化交通管理和提高行车安全,满足现代社会对高效、安全、环保的交通需求。同时,随着技术的不断进步,智能网联技术将在更多领域和场景中应用,如智能物流、智慧城市等,带来更加智能、高效和安全的交通和生活方式。

2024-07-19 17:51:59 1284

原创 APIGEE &42 Crunch 技术总结

通过集成和协作,Apigee 和 42Crunch 可以为企业提供一个全面的 API 管理和安全解决方案,确保 API 的高性能和高安全性。通过集成 42Crunch,Apigee 用户可以在开发者门户中提供更详细的安全文档和指南,帮助开发者遵循最佳实践,编写更安全的 API。通过集成,42Crunch 可以直接从 Apigee 获取 API 定义,并对其进行详细的安全分析和测试,识别潜在的安全漏洞和风险。Apigee 的分析和监控功能可以与 42Crunch 的安全报告结合,提供更全面的使用和安全分析。

2024-07-19 17:40:09 464

原创 智慧军工技术总结

数字孪生技术在智能化战争中展现出巨大的潜力,不仅能够推动新型高端装备的研制和生产模式创新,还能在作战指挥、训练、装备管理、信息通信等多个方面提供支持,是军事领域内具有颠覆性潜力的技术。军事训练与仿真:数字孪生技术提供了接近实战的训练环境,通过构建数字化的虚拟训练场,士兵可以在模拟的战场环境中进行实战化训练,提高训练效果和质量。网络安全与防御:数字孪生技术在网络安全领域的应用,通过创建网络系统的数字副本,模拟网络攻击和防御,提高系统的安全性和弹性。

2024-07-11 19:33:32 381

原创 智慧灯塔技术总结

智慧灯塔技术的发展和应用,不仅推动了制造业的数字化转型,也为全球智能制造的发展提供了新的方向和动力。数字化转型:智慧灯塔工厂推动了企业的数字化转型,通过建立数字化车间和智能工厂,实现了生产过程的自动化和智能化,从而提升企业的运营效率和管理水平。行业示范作用:智慧灯塔工厂作为行业的标杆,为其他企业提供了可复制、可借鉴的经验,推动了整个制造业的数字化转型和智能化升级。经济效益:智慧灯塔工厂通过数字化和智能化技术的应用,显著提高了劳动生产率,降低了转换成本和能耗,实现了经济效益的最大化。

2024-07-11 19:31:25 277

原创 智慧石油技术总结

智慧石油技术,也称为智能油田技术,是指利用现代信息技术,包括物联网(IoT)、大数据、云计算、人工智能(AI)、机器学习等,来优化石油和天然气的勘探、开发、生产和运营过程。智慧石油技术是一个高度专业化和综合性的领域,它涉及到石油勘探、开发、生产、储运等多个环节的智能化和自动化技术应用。以下是对智慧石油技术的一个总结,由于篇幅限制,这里提供的是一个概要,具体的技术细节和案例分析可能需要更深入的研究和文献支持。法规与标准:制定相应的法规和标准,确保技术的健康发展。

2024-07-11 19:28:06 249

原创 怎么提升自己的情商

提升情商是一个长期且持续的过程,它不仅有助于个人的职业发展,还能改善人际关系和整体生活质量。不断学习和实践情商技巧,寻求反馈和改进,您将能够更好地应对生活中的挑战,建立更加和谐和成功的人际关系。使用“我”陈述,而不是指责对方。协商与妥协:在解决冲突时,采取协商和妥协的态度,找到双方都能接受的解决方案。例如,当您感到压力时,可以具体化为“我感到紧张,因为我担心无法按时完成任务”。设定具体目标:设定明确、具体的目标,可以帮助您保持积极的情绪和动力。记录每天的情绪、想法和行为,可以帮助您识别情绪模式和触发因素。

2024-07-11 15:19:30 880

原创 Docker or PodMan Image File镜像最小化的好处

最小化容器镜像可以提高安全性、减少存储空间需求,并加快容器启动时间。Alpine Linux: Alpine 是一个极简的 Linux 发行版,专为最小化镜像设计。使用 Alpine 作为基础镜像可以显著减少镜像大小。例如:DockerfileDistroless 镜像: Google 提供的 Distroless 镜像只包含运行应用程序所需的最小文件,不包括包管理器和 shell 等工具。适用于需要极简环境的应用程序。例如:Dockerfile2. 多阶段构建。

2024-06-20 12:08:38 697 1

原创 Devops 和 Sre的区别

SRE 强调自动化、系统可靠性和可扩展性,并通过制定服务等级指标(SLI)、服务等级目标(SLO)和服务等级协议(SLA)来衡量和提升系统性能。SRE: 采用自动化工具和脚本来减少人为干预,实施错误预算(Error Budget)来平衡新特性发布和系统稳定性,使用服务等级指标(SLI)和服务等级目标(SLO)来衡量和改进系统性能。服务等级指标(SLI)和服务等级目标(SLO): 使用 Prometheus、Grafana 等工具进行监控和指标收集,定义和追踪 SLI 和 SLO。

2024-06-20 12:00:58 461

原创 在商业和金融领域,Q1、Q2、Q3、Q4 通常指的是一年中的四个季度。

Q1、Q2、Q3、Q4 作为年度的四个季度,不仅用于财务报告,还广泛应用于预算管理、绩效评估和市场分析等方面。Q4 财报(2023年10月1日-2023年12月31日):总结全年财务数据,进行年度审计和下一年规划。Q3 财报(2023年7月1日-2023年9月30日):评估第三季度的财务情况,调整年度计划。公司会在每个季度进行绩效评估,以检查各部门和员工的工作进展情况,并制定相应的奖励或改进措施。这是关键的评估和总结季度,企业会进行年度审计、总结全年绩效,并制定下一年的详细计划和预算。

2024-06-20 11:53:52 3280

原创 GraphQL 在 Java 技术中的应用:构建高效、灵活的 API

它以其强大的查询能力、灵活的数据获取方式以及高效的性能,为构建现代化的 API 提供了全新的思路。例如,在微服务架构中,每个服务都可以提供自己的 GraphQL API,客户端可以通过一个统一的 GraphQL API 来访问所有服务,并获取所需的数据。与其他技术的集成: GraphQL 将与其他技术,如 Spring Boot、Spring Data 和 Apache Kafka 等,进行更深入的集成,提供更便捷的开发体验和更强大的功能。GraphQL 是一种用于 API 的查询语言和运行时环境。

2024-06-20 11:44:22 464

原创 Flink技术总结待续

Flink技术总结待续。

2024-06-20 08:18:31 131

原创 Grafana 技术总结

Grafana 是一款开源的、用于可视化和分析指标数据的工具,通过多数据源支持、强大的可视化能力、灵活的仪表盘管理、实时监控和告警、插件和扩展等特点,广泛应用于系统监控、应用性能分析、业务指标可视化、日志分析等场景。Grafana 广泛应用于系统监控场景,通过与 Prometheus、InfluxDB 等数据源集成,用户可以实时监控系统的 CPU、内存、磁盘、网络等指标,及时发现和处理系统故障。Grafana 提供多种类型的面板,如时序图、条形图、饼图、热力图、表格等,用户可以根据需要选择合适的面板类型。

2024-06-16 10:46:59 744

原创 Kafka 技术总结

Kafka 是由 LinkedIn 创建并于 2011 年开源的一款分布式流处理平台,通过高吞吐量、低延迟、高可靠性和可扩展性特性,广泛应用于实时数据处理、数据集成与传输、日志和监控、消息队列等场景。创建主题:kafka-topics.sh --create --topic example-topic --bootstrap-server localhost:9092 --partitions 3 --replication-factor 2。Kafka 通过数据复制机制,确保数据的高可靠性和一致性。

2024-06-16 10:30:24 903

原创 Thrift 技术总结

Thrift 支持多种编程语言,通过 Thrift IDL 和编译器,用户可以使用不同的编程语言实现客户端和服务端,通过 Thrift 进行通信,实现多语言服务的集成和互通。通过 Thrift,服务可以使用不同的编程语言实现,进行跨语言的服务调用。Thrift提供了多语言SDK,用户可以使用不同的编程语言实现客户端,通过SDK进行服务注册和发现、配置管理等操作。Thrift 提供了异步调用支持,通过异步接口和回调机制,用户可以实现非阻塞的远程服务调用,提升系统的并发性能和响应速度。

2024-06-16 09:45:16 443

原创 Sentinel 技术总结

一、Sentinel 简介历史背景Sentinel 是由阿里巴巴开源的一款流量控制和熔断降级组件,旨在通过灵活的流量控制和熔断降级机制,帮助开发者保护微服务架构中的应用和服务。Sentinel 最初用于阿里巴巴内部的各种大规模流量场景,后来逐渐演变为一个开源项目,广泛应用于各类分布式系统中。设计理念Sentinel 的设计理念包括:稳定性保障:通过流量控制、熔断降级等机制,保障系统的稳定性和高可用性。灵活性和可扩展性:提供丰富的配置和扩展能力,满足不同应用场景的需求。

2024-06-16 09:40:22 858

原创 TensorFlow 技术总结

TensorFlow 是由谷歌开发的一款开源机器学习框架,广泛应用于各类机器学习任务,包括深度学习、强化学习和传统的机器学习任务。TensorFlow 因其高性能、灵活性和广泛的社区支持,成为了学术界和工业界的主流选择。以下是对 TensorFlow 技术的详细总结,包括其历史、特点、核心组件、应用场景、实际应用中的经验和技巧。一、TensorFlow 简介历史背景TensorFlow 由谷歌大脑团队开发,最初发布于2015年。它是 DistBelief 的继任者,DistBelief 是谷歌内部使用的第

2024-06-16 09:28:53 1071

原创 Nacos 技术总结

Nacos 技术总结Nacos 是由阿里巴巴开源的一款用于动态服务发现、配置管理和服务管理的平台。Nacos 是 “Dynamic Naming and Configuration Service” 的缩写,旨在帮助用户实现微服务架构中的服务注册与发现、配置管理、动态 DNS 服务等功能。以下是对 Nacos 技术的详细总结,包括其历史、特点、核心组件、应用场景、实际应用中的经验和技巧。一、Nacos 简介历史背景。

2024-06-16 09:25:55 643

原创 gRPC 技术总结

通过掌握 gRPC 的核心组件、应用场景以及实际应用中的经验和技巧,用户可以高效地进行远程过程调用和服务集成,提升系统的性能和可靠性。随着微服务架构、分布式系统和实时通信的广泛应用,gRPC 作为高性能的远程过程调用框架,将继续发展和完善。使用 Protocol Buffers 定义服务接口和消息类型,通过 gRPC 进行跨语言的服务调用,提高了服务的性能和可维护性。使用 Protocol Buffers 定义服务接口和消息类型,通过 gRPC 进行通信,实现了多语言环境中的服务集成和互通。

2024-06-16 09:16:49 751

原创 TensorFlow 技术总结

TensorFlow 是由谷歌开发的一款开源机器学习框架,广泛应用于各类机器学习任务,包括深度学习、强化学习和传统的机器学习任务。TensorFlow 因其高性能、灵活性和广泛的社区支持,成为了学术界和工业界的主流选择。以下是对 TensorFlow 技术的详细总结,包括其历史、特点、核心组件、应用场景、实际应用中的经验和技巧。一、TensorFlow 简介历史背景TensorFlow 由谷歌大脑团队开发,最初发布于2015年。它是 DistBelief 的继任者,DistBelief 是谷歌内部使用的第

2024-06-16 09:04:45 1141

Github Account

https://github.com/GlobalCodingGeekTeamBigData

2022-06-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除