tensorflow checkout 的作用

本文解析了TensorFlow中checkpoint文件的作用,它记录模型文件路径,支持模型微调。重点讲解了checkpoint文件的结构和在模型训练后的应用,以及其与save_weights的区别。
摘要由CSDN通过智能技术生成

tensorflow checkout 的作用

参考链接如下:
Tensorflow保存恢复模型及微调
网络模型的保存和读取

tensorflow训练保存的模型

在这里插入图片描述
模型文件夹中的文件主要为以下三类:

  1. checkpoint
  2. .data-00000-of-00001
  3. .index

checkout 文件

checkpoint是一个文本文件,保存了一个目录下所有的模型文件列表,是tf.train.Saver类自动生成且自动维护的。该文件中有model_checkpoint_path和all_model_checkpoint_paths两个属性,model_checkpoint_path保存了最新的tensorflow模型文件的文件名,all_model_checkpoint_paths则有未被删除的所有tensorflow模型文件的文件名。
在这里插入图片描述
可以自己修改checkpoint文件,修改之后,我的两个模型都可以成功加载;如果删除了checkpoint文件,也可以顺利加载。我认为对于训练之后直接save_weights()的模型,checkpoint文件作用不大。

model.save_weights("%s%s" % (save_weights_dir, weights_name))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值