tensorflow checkout 的作用
参考链接如下:
Tensorflow保存恢复模型及微调
网络模型的保存和读取
tensorflow训练保存的模型

模型文件夹中的文件主要为以下三类:
- checkpoint
- .data-00000-of-00001
- .index
checkout 文件
checkpoint是一个文本文件,保存了一个目录下所有的模型文件列表,是tf.train.Saver类自动生成且自动维护的。该文件中有model_checkpoint_path和all_model_checkpoint_paths两个属性,model_checkpoint_path保存了最新的tensorflow模型文件的文件名,all_model_checkpoint_paths则有未被删除的所有tensorflow模型文件的文件名。

可以自己修改checkpoint文件,修改之后,我的两个模型都可以成功加载;如果删除了checkpoint文件,也可以顺利加载。我认为对于训练之后直接save_weights()的模型,checkpoint文件作用不大。
model.save_weights("%s%s" % (save_weights_dir, weights_name))
本文解析了TensorFlow中checkpoint文件的作用,它记录模型文件路径,支持模型微调。重点讲解了checkpoint文件的结构和在模型训练后的应用,以及其与save_weights的区别。

1万+

被折叠的 条评论
为什么被折叠?



