2D-UNet脑胶质瘤分割BraTs + Pytorch实现

2D-UNet讲解

玖零猴:U-Net+与FCN的区别+医学表现+网络详解+创新

BraTs数据准备

数据来源

本文用的训练集和验证集均来自BraTs2018的训练集(其中HGG:210个病人,LGG:75个病人)

但由于BraTs只公开训练集数据,没有测试集数据,如果在训练集中再拆一部分用来作测试集的话,那训练集便少了许多,训练数据如果过少,容易出现过拟合现象,即在训练集中表现好,而在测试集中表现差,此时的网络泛化能力变差了.为了解决数据少的问题,灵机一动的我想出了一个办法.

因为BraTs2019的训练集在BraTs2018的基础上增多了,其中HGG增加了49例,LGG增加了1例,那么我就把这些新增的作为我的测试集

下面我提供百度云盘给大家下载,这是原始数据

BraTs18数据集下载地址(不包含测试集,提供的验证集无GT)
链接:https://pan.baidu.com/s/1Ry41OVl9VLOMzhQQR9qXuA 提取码:qvmo
BraTs19数据集下载地址如下(不包含测试集,提供的验证集无GT)
链接: https://pan.baidu.com/s/1S5XGTdHkwFnagKS-5vWYBg 提取码: 2333

数据的预处理以及实现代码

把上面两年的数据下下来,然后我对数据的预处理方法是链接

完整的实现代码(jupyter notebook打开)

下载:https://github.com/Merofine/BraTS2Dpreprocessing​github.com

  1. GetTrainingSets.ipynb——>训练集和验证集
  2. GetTestingSetsFrom2019.ipynb-—>测试集

代码执行完后,获得npy数据

<如果大家嫌麻烦,我这里提供预处理好的npy数据>

链接:https://pan.baidu.com/s/1iIBvqrXIx2JAvoyt3FcuYw  密码:4qua

训练集、验证集和测试集——预处理之区别

它们的预处理除了是否要去除没有病灶切片外,别无区别

训练集是去除的,以缓解类别不均衡问题,类别不平衡(class-imbalance)就是指分类任务中不同类别的训练样例数目差别很大的情况,但若差别很大,则会对学习过程造成困扰.我们的任务是分割,分割是一种对像素级别的分类,一个切片假如病灶很少甚至没有,那么就会出现严重的类别不均衡,学习的时候网络就会偏向于多的那一类靠,为了缓解这种情况,应该剔除没有病灶的切片

而验证集我也是去除的,因为验证集其实在训练过程中扮演了另一角色,虽然并没有直接参与训练,可是却是为了防止过拟合现象,也就是说防止网络将这些有病灶的切片学得太过头了,这是个人理解,具体到底是否去除,还得通过实验证明

测试集当然是不用去除的,因为这个时候就是考验它的时候到了,让它自己判断是否有病灶

运行环境的安装

windows10 64 bits、nvidia驱动、CUDA8.0、cudnn、anaconda

        打开命令窗口, 分别输入以下指令:

conda create -n jiu0Monkey python=3.6

conda activate jiu0Monkey

pip install simpleitk

pip install opencv-python==3.4.2.16

pip install scipy

pip install scikit-learn==0.20

pip install scikit-image==0.14

conda  install numpy  mkl cffi

安装pytorch,选择与cuda版本对应的进行安装,python版本也要对应
下载链接:https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
我选择的是win-64 pytorch-0.4.0-py36_cuda80_cudnn7he774522_1.tar.bz2
下载完毕后进行安装,找到下载目录并执行:
conda install --offline .\pytorch-0.4.0-py36_cuda80_cudnn7he774522_1.tar.bz2

conda install  torchvision  -c pytorch

conda install Pillow=6.1

conda install tqdm

conda install pandas

pip install -U scikit-image

        
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple numba
pip install hausdorff
      

代码下载链接

闲鱼APP - 搜索 - 玖零猴 医学图像分割

训练:

将train.py的img_paths和mask_paths修改为自己的trainImage和trainMask的路径

训练前会通过train_test_split函数将数据集划分为训练集和验证集,只要参数random_state一样,划分的结果就是一样的

每一次epoch训练结束,都会对验证集进行测试Iou指标,如果比之前最好的还要好就保存本次训练模型,如果超过args.early_stop这个参数还没有训练更好的话,便结束训练,这个原理就是early_stop,主要还是防止网络训练过度,造成过拟合现象,这也就是验证集虽然没有直接参与训练,但是却在其中扮演了一个非常重要的角色!

如果要训练Unet,则运行下面指令

        python .\train.py --arch="Unet" --dataset=“Jiu0Monkey”
      

其它参数根据自己的情况进行配置

预训练好的模型下载:

链接:https://pan.baidu.com/s/1CBSyOW3n0IOoEIbNdsbOrg  密码:w7fw

preview

preview

预测:

将test.py的img_paths和mask_paths修改为自己的testImage和testMask的路径

运行下面指令获得测试结果以及GT文件:

        python .\test.py --name="Jiu0Monkey_Unet_woDS" --mode="GetPicture"
      

preview

运行下面指令评价测试结果以及GT文件的指标,想了解更多指标的信息包括Dice、Hausdorff、IOU、PPV等,可以参考我这一篇(分割常用评价指标)

        python .\test.py --name="Jiu0Monkey_Unet_woDS" --mode="Calculate"
      

运行结果:

preview

v2-b97fafc668d7d17b219c051e84491989_b.jpg

以下是一个简单的UNet 3+的PyTorch实现,仅供参考: ```python import torch import torch.nn as nn import torch.nn.functional as F class DoubleConv(nn.Module): def __init__(self, in_channels, out_channels, mid_channels=None): super().__init__() if not mid_channels: mid_channels = out_channels self.double_conv = nn.Sequential( nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1), nn.BatchNorm2d(mid_channels), nn.ReLU(inplace=True), nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True) ) def forward(self, x): return self.double_conv(x) class Down(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.maxpool_conv = nn.Sequential( nn.MaxPool2d(2), DoubleConv(in_channels, out_channels) ) def forward(self, x): return self.maxpool_conv(x) class Up(nn.Module): def __init__(self, in_channels, out_channels, bilinear=True): super().__init__() if bilinear: self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) else: self.up = nn.ConvTranspose2d(in_channels // 2, in_channels // 2, kernel_size=2, stride=2) self.conv = DoubleConv(in_channels, out_channels) def forward(self, x1, x2): x1 = self.up(x1) # input is CHW diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2]) x = torch.cat([x2, x1], dim=1) return self.conv(x) class AttentionBlock(nn.Module): def __init__(self, F_g, F_l, F_int): super(AttentionBlock, self).__init__() self.W_g = nn.Sequential( nn.Conv2d(F_g, F_int, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(F_int) ) self.W_x = nn.Sequential( nn.Conv2d(F_l, F_int, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(F_int) ) self.psi = nn.Sequential( nn.Conv2d(F_int, 1, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(1), nn.Sigmoid() ) self.relu = nn.ReLU(inplace=True) def forward(self, g, x): g1 = self.W_g(g) x1 = self.W_x(x) psi = self.relu(g1 + x1) psi = self.psi(psi) return x * psi class UNet3Plus(nn.Module): def __init__(self, in_channels=3, out_channels=1, bilinear=True): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.bilinear = bilinear self.down1 = Down(in_channels, 32) self.att1 = AttentionBlock(F_g=32, F_l=32, F_int=16) self.down2 = Down(32, 64) self.att2 = AttentionBlock(F_g=64, F_l=64, F_int=32) self.down3 = Down(64, 128) self.att3 = AttentionBlock(F_g=128, F_l=128, F_int=64) self.down4 = Down(128, 256) self.att4 = AttentionBlock(F_g=256, F_l=256, F_int=128) self.center = DoubleConv(256, 512) self.att5 = AttentionBlock(F_g=512, F_l=512, F_int=256) self.up4 = Up(512, 256, self.bilinear) self.att6 = AttentionBlock(F_g=256, F_l=256, F_int=128) self.up3 = Up(256, 128, self.bilinear) self.att7 = AttentionBlock(F_g=128, F_l=128, F_int=64) self.up2 = Up(128, 64, self.bilinear) self.att8 = AttentionBlock(F_g=64, F_l=64, F_int=32) self.up1 = Up(64, 32, self.bilinear) self.outc = nn.Conv2d(32, out_channels, kernel_size=1) def forward(self, x): x1 = self.down1(x) x2 = self.down2(x1) x3 = self.down3(x2) x4 = self.down4(x3) center = self.center(x4) center = self.att5(g=center, x=center) x4 = self.att4(g=center, x=x4) x3 = self.att3(g=x4, x=x3) x2 = self.att2(g=x3, x=x2) x1 = self.att1(g=x2, x=x1) x = self.up4(center, x4) x = self.att6(g=x, x=center) x = self.up3(x, x3) x = self.att7(g=x, x=x3) x = self.up2(x, x2) x = self.att8(g=x, x=x2) x = self.up1(x, x1) logits = self.outc(x) return logits ``` 在这个实现中,我们首先定义了一个双卷积块(DoubleConv)、下采样块(Down)和上采样块(Up)。然后定义了一个注意力块(AttentionBlock)来实现UNet 3+中的跨通道注意力机制。最后,我们将所有块组合在一起以定义UNet 3+网络。
评论 34
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

玖零猴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值