1.了解用户画像的设计方法、技术、应用场景
2.了解金融行业用户画像最佳实践
什么是用户画像?体系、方式方法都已成熟,但是银行金融等相关领域的实施刚刚起步

数据来自用户本身,注册数据、消费数据、银行卡信息
应用:用户相关的海量数据--->抽象为机构化数据(用户标签)---->解决问 题(我们的用户价值大小?)
用户画像标签体系:人口属性:性别、年龄、职业、婚姻状况、学历教育
商业人口属性:工作岗位、公司规模、行业类型
行为属性:访问时长、访问频次、访问媒体

打造用户画像的基础思路-结构化标签体系
*标签组织成比较规整的树或森林,有明确的层级划分和父子关系,一般是4级
*采用半结构化文本方式描述用户
打造用户画像的基础思路-非结构化标签体系
特点:标签无层级关系
典型例子:搜索关键词、美团用户兴趣词

本文探讨了金融行业用户画像的构建方法,包括结构化和非结构化标签体系,强调了数据来源如注册信息、交易行为和风险数据。银行通过用户画像进行精准营销,如理财产品的推广,并介绍了评估用户兴趣的算法。同时,文章提到了数据存储和检索技术,如Hadoop、Spark SQL、HBase和ElasticSearch在用户画像中的应用。
最低0.47元/天 解锁文章
740

被折叠的 条评论
为什么被折叠?



