GPU利用率低的解决办法

watch -n 0.1 -d nvidia-smi # 检查GPU利用率参数

解决办法:

1. dataloader设置参数

2.增大batchsize

3. 减少IO操作,比如tensorboard的写入和打印。

4. 换显卡

5. 性能分析

import time
import cProfile, pstats, profile


def add(x, y):
    time.sleep(1)
    value = x + y
    return value


def sub(x, y):
    time.sleep(1.5)
    value = x - y
    return value


class TestProfile:
    def calc(self, x, y):
        time.sleep(1)
        add_result = add(x, y)
        sub_result = sub(x, y)
        print(f"{x} add {y} result is: {add_result}")
        print(f"{x} sub {y} result is: {sub_result}")


if __name__ == '__main__':
    obj = TestProfile()
    # 要分析的函数。
    # 原来调用该怎么写就写成相应的字符串形式就好了
    be_analysed_function = "obj.calc(1,2)"
    # 给此次监测命个名,随意起。
    analysed_tag_name = "test_analysed"
    # 使用c语言版的profile进行分析,好处是自身占用资源更少,对函数的耗时定位更准确
    cProfile.run(be_analysed_function, analysed_tag_name)
    # 使用python版的profile进行分析,格式都一样的。
    # profile.run(be_analysed_function, analysed_tag_name)

    # 对此次监测进行分析。
    s = pstats.Stats(analysed_tag_name)
    # 移除文件目录,减少打印输出
    # s.strip_dirs()
    # 排序。
    # "time"表示按函数总耗时排序,python3.7后可用枚举变量pstat.SortKey来取排序项
    s.sort_stats("time")
    # 打印统计结果
    # ncalls--函数被调用的次数
    # tottime--此函数在所有调用中共耗费的时间秒数(不包括其调用的子函数耗费的时间)。分析耗时主要看这个。
    # percall--此函数平均每次被调用耗时。分析耗时次要看这个
    # cumtime--执行此函数及其调用子函数所占用的时间。
    # percall--此函数平均每次调用每个子函数所用的时间。
    s.print_stats()
    # print_stats的结果并不显示谁调用的谁,比如是A调用的C还是B调用的C是不清楚的
    # 要打印出函数的调用者,可使用print_callers()
    # 结果中右边是被调用函数,左边是调用该函数的函数
    # s.print_callers()

https://blog.csdn.net/DD_PP_JJ/article/details/111829869

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: TensorFlow的GPU利用率可能是由于以下原因导致的: 1. 数据读取速度慢:如果数据读取速度慢,GPU就会等待数据,从而导致GPU利用率。 2. 模型设计不合理:如果模型设计不合理,GPU就会在某些操作上闲置,从而导致GPU利用率。 3. GPU内存不足:如果GPU内存不足,就会导致GPU无法加载更多的数据和模型参数,从而导致GPU利用率。 4. 硬件配置不合理:如果硬件配置不合理,比如GPU和CPU之间的带宽不足,就会导致GPU利用率。 解决这些问题的方法包括: 1. 使用数据增强技术来提高数据读取速度。 2. 优化模型设计,使得GPU能够更充分地利用。 3. 使用分布式训练技术来扩展GPU内存。 4. 调整硬件配置,比如增加GPU和CPU之间的带宽。 ### 回答2: TensorFlow是一种广泛使用的深度学习框架,它支持在CPU和GPU上运行。然而,有时候你可能会发现在运行TensorFlow时,GPU利用率。下面我将讨论一些可能导致这种现象的原因。 1.数据传输 一个可能的原因是数据传输。当在GPU上运行TensorFlow时,将数据从主机内存传输到GPU存储器是必要的。这个过程需要时间,并且会降GPU利用率。可以通过使用高效的数据传输方式来减少传输时间,比如使用GPU直接映射(DMA)或者异步数据传输技术。 2.内存瓶颈 内存瓶颈是另一个可能的原因。如果数据无法完全存储在GPU上,那么就需要频繁地进行数据传输,这会降GPU利用率。可以尝试减小批量大小或者增加GPU内存,以解决这个问题。 3.模型复杂度 模型复杂度也是GPU利用率的原因之一。如果你的模型非常复杂,那么GPU的运算量就会非常大。在这种情况下,可以考虑减少模型复杂度或者选择更高规格的GPU。 4.调优问题 最后一个可能导致GPU利用率的原因是调优问题。如果你的代码实现不够高效或者不够优化,那么就可能会导致GPU利用率。可以通过使用TensorFlow Profiler或其他性能监视工具来识别和解决这个问题。 综上所述,导致TensorFlow的GPU利用率的原因有很多,这些原因可能是数据传输、内存瓶颈、模型复杂度和调优问题等。如果遇到这个问题,可以结合上述原因进行分析和优化。 ### 回答3: 首先,TensorFlow的GPU利用率主要是由于两个原因:数据传输和计算时间不均衡以及并行度不足。当我们将TensorFlow运行在GPU上时,相比于CPU,GPU拥有更多的处理单元和更快的计算速度,所以理论上它应该更快地计算。但是,由于计算密集型程序相对于数据密集型程序需要更多的数据传输,所以数据传输等待时间就会比较长,导致GPU的计算单元处于闲置状态。 其次,TensorFlow本身的并行度不够高。GPU的计算能力远远高于CPU,如果我们能很好地利用GPU的并行计算能力,那么理论上可以大大提高TensorFlow的计算效率,但实际上TensorFlow在GPU上并不是很好的利用了其并行计算能力,这也是导致GPU利用率的一个重要因素。 解决这个问题的方法有很多,其中一种方法是通过使用批量处理(batch processing)来减少数据传输的等待时间;另一种是使用更高效的并行计算框架或优化TensorFlow框架本身的并行计算能力。整体上,提高TensorFlow在GPU上的计算效率可以通过优化数据传输、提升并行度和使用更高效的GPU优化算法等方法来实现。优化这些因素,可以提高TensorFlow在GPU上的利用率,以及计算效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data_Designer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值