(PAT乙级)数组元素循环右移问题(Python)

本文介绍了一种在不使用额外数组的情况下,实现数组元素循环右移的算法,并提供了两种Python实现方式,一种通过元素逐个移动,另一种利用列表切片简化操作。
摘要由CSDN通过智能技术生成

一个数组A中存有N(N>0)个整数,在不允许使用另外数组的前提下,将每个整数循环向右移M(M>=0)个位置,即将A中的数据由(A0A1……AN-1)变换为(AN-M …… AN-1 A0 A1……AN-M-1)(最后M个数循环移至最前面的M个位置)。如果需要考虑程序移动数据的次数尽量少,要如何设计移动的方法?

输入格式:每个输入包含一个测试用例,第1行输入N ( 1<=N<=100)、M(M>=0);第2行输入N个整数,之间用空格分隔。

输出格式:在一行中输出循环右移M位以后的整数序列,之间用空格分隔,序列结尾不能有多余空格。

输入样例:
6 2
1 2 3 4 5 6
输出样例:

5 6 1 2 3 4


刚开始的设想是分成两种情况,一种是右移次数大于总元素,比如6个元素右移10;另一种是右移次数小于总次数,比如6个元素右移2次。

根据题目的例子,我发现右移2个位置,相当于把数组前4个元素按顺序插入到数组末尾,也就是把1移出,再重新在末尾插入,再把2移出,在末尾插入,3,4也是同样操作。总的操作次数就是元素总个数减去右移的次数,也就是6-2=4次。

而右移次数较大时,主要的思路是转化成右移次数小的情况来解决。比如用6个元素,右移19次来举例:19/6=3...1,相当于队首元素i移到队末的位置i+5然后又回到队首i,这操作重复了3次,最后停留在i+1的位置,实际上就是右移了1次。而用5个元素,右移21次举例:23/5=4...3,实际上就是右移了3次。这里找找规律算一下就能得出结果。

n = input().split()
x = input().split()
n1 = int(n[0])
n2 = int(n[1])
if n1>=n2:
    for i in range(int(n[0]) - int(n[1])):#移动次数比list元素少时
        b = x.pop(0)
        x.append(b)
else:
    for i in range(int(n[0])-(int(n[1])%int(n[0]))):#移动次数比list元素多时
        b = x.pop(0)
        x.append(b)
print(' '.join(x))


下面还有种利用python的list切片的方法,更加方便简单,直接上代码:

n=input().split()
m=input().split()
a=int(n[0])
b=int(n[1])
m1=m[a-b:]
m2=m[:a-b]
x=m1+m2
print(' '.join(x))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值