业界 | 想转行?数据科学全流程求职指南

本文覆盖数据科学求职全过程。从申请到面试,到拿offer之后的协商,所有细节一应俱全。每个阶段都有作者丰富的个人感悟以及链接资源~

内容不仅适用于有兴趣在美国申请数据科学相关工作的求职者,大体上也适用于各种技术工作的申请。

工作申请

在网上打造个人IP

谨慎处理自己在社交网络上公开的信息

比如,检查你在Facebook或者其他社交媒体上的隐私设置,确保公开的范围适当。很多公司的网申表格中都可以选填推特账号,除非你的推特主要用于专业用途(例如,介绍数据科学相关资源或晒宠物),否则不要填写。

如果你有GitHub账户,建议使用Pin功能优先展示你希望别人看到的项目,并添加解释该项目的README文档。 另外,我强烈建议你创建自己的博客,用于展示数据科学相关的内容,例如,你做过的项目,机器学习方法的解释,或者参加会议的摘要。

如果你还是认为写博客浪费时间,请参考Dave Robinson撰写的相关文章。如果你使用R,可以尝试使用blogdown来创建网站。Emily Zabor为blogdown写了一篇很棒的教程。另外,你还可以在Mara Averick创建的资源列表上找到更多的关于blogdown的资源。如果你不使用R,你可以直接使用Hugo(blogdown构建在Hugo的基础之上)搭建个人博客,或者用更简单的方式——在Medium网站上创建博客。

相关链接:

http://varianceexplained.org/r/start-blog/

https://bookdown.org/yihui/blogdown/

http://www.emilyzabor.com/tutorials/rmarkdown_websites_tutorial.html

https://maraaverick.rbind.io/2017/10/keeping-up-with-blogdown/

职位寻找与评估

b9383e1f646ba7ca75ee58fd74031e94cc10e69e

广撒网

数据科学家有很多别名,包括产品分析师、数据分析师、研究科学家、量化分析师和机器学习工程师。类似的职位在不同公司中头衔也不一样。有些公司还在不断改变头衔所代表的职能(Lyft最近将数据分析师更名为数据科学家,然后又更名为研究科学家)。

就数据分析师与数据科学家的区别,现在行业内也没有达成一致意见(参见Mikhail Popov最近发表的一篇总结不同观点的文章)。在寻找工作的时候,你可以搜索上面提到的所有头衔以便更广泛的查找职位,然后根据职位描述来评估自己是否合适。如果你对初创企业感兴趣,Angelist上有数千个职位,其中许多职位都列举出了薪资范围。

原文链接

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页