MaxCompute数据仓库在更新插入、直接加载、全量历史表三大算法中的数据转换实践

2018“MaxCompute开发者交流”钉钉群直播分享,由阿里云数据技术专家彬甫带来以“MaxCompute数据仓库数据转换实践”为题的演讲。本文首先介绍了MaxCompute的数据架构和流程,其次介绍了ETL算法中的三大算法,即更新插入算法、直接加载算法、全量历史表算法,再次介绍了在OLTP系统中怎样处理NULL值,最后对ETL相关知识进行了详细地介绍。
数十款阿里云产品限时折扣中,赶快点击这里,领券开始云上实践吧!
直播视频回顾
PPT下载请点击
以下内容根据现场分享整理而成。

数据架构及流程

 

image001


MaxCompute包含临时层、基础数据层、应用层三个层次,数据上云后将数据源中的数据先传输到MaxCompute里的临时层中,并将数据进行处理,接着将数据经过简单的转换传输到基础数据层,最后将数据进一步汇总到应用层进而提供服务。三个层次的具体介绍如下:

  • 临时层:临时层包含增量数据和全量数据。
  • 基础数据层:基础数据层的优点是可以永久性的保存数据,它包含核心模型和通用汇总,其中核心模型又包含客户、商品、事件、渠道、代码等数据。基础数据层使用数据仓库的实体、属性命名规范来创建模型表,基础数据层表可分为主表、历史表和追加表,且具有保存历史数据、高效地使用、方便的设计原则。
  • 应用层:应用层包含数据集市,即包含客户分析、销售分析、商品库存分析。它不像基础数据层那样可以永久性的保存数据,而是仅保存需要的数据,但它像基础数据层那样适应于使用数据仓库的实体、属性命名规范来创建模型表的原则。

ETL算法

ETL加载转换策略有M1全表覆盖、M2更新插入、M3直接加载、M4全量历史拉链、M5增量历史拉链五种策略,在ETL算法中主要介绍M2更新插入(主表)算法、M3直接加载算法、M4全量历史表算法三种算法。

原文链接

一、项目简介 本项目教程以国内电商巨头实际业务应用场景为依托,同时以阿里云ECS服务器为技术支持,紧跟大数据主流场景,对接企业实际需求,对电商数仓的常见实战指标进行了详尽讲解,让你迅速成长,获取最前沿的技术经验。 二、项目架构 版本框架:Flume、DateHub、DataWorks、MaxCompute、MySql以及QuickBI等; Flume:大数据领域被广泛运用的日志采集框架; DateHub:类似于传统大数据解决方案Kafka的角色,提供了一个数据队列功能。对于离线计算,DataHub除了供了一个缓冲的队列作用。同时由于DataHub提供了各种与其他阿里云上下游产品的对接功能,所以DataHub又扮演了一个数据的分发枢纽工作; 据上传和下载通道,提供SQL及MapReduce等多种计算分析服务,同时还提供完善的安全解决方案; DataWorks:是基于MaxCompute计算引擎,从工作室、车间到工具集都齐备的一站式大数据工厂,它能帮助你快速完成数据集成、开发、治理、服务、质量、安全等全套数据研发工作; QuickBI & DataV:专为云上用户量身打造的新一代智能BI服务平台。 三、项目场景 数仓项目广泛应用于大数据领域,该项目技术可以高度适配电商、金融、医疗、在线教育、传媒、电信、交通等各领域; 四、项目特色 本课程结合国内多家企业实际项目经验。从集群规模的确定到框架版本选型以及服务器选型,手把手教你从零开始搭建基于阿里云服务器的大数据集群。采用阿里云ECS服务器作为数据平台,搭建高可用的、高可靠的Flume数据采集通道,运用阿里云DateHub构建间缓冲队列并担任数据分发枢纽将数据推送至阿里自主研发的DataWorks对数据进行分层处理,采用MaxCompute作为处理海量数据的方案,将计算结果保存至MySQL并结合阿里的QuickBI工作做最终数据展示。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值