Ubuntu下使用conda在虚拟环境中安装CUDA、CUDNN及Tensorflow

在Ubuntu中安装Anaconda可以根据 这篇博客,写的十分详细。
装好之后,可以通过通过命令安装版本为X.X(如2.7,3.6)的虚拟环境:

conda create -n your_env_name python=X.X

其中(your_env_name)是你所创建的虚拟环境的名字。
然后 使用下方命令激活你刚才建立的环境

source activate your_env_name

激活了环境之后,我们可以看到命令行之前多了一个括号,括号中包含了你的环境名字,这就说明激活成功。
在激活的环境中使用如下命令安装CUDA:

conda install cudatoolkit=8.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/linux-64/

我装CUDA的同时,自动装上了CUDNN。
如果你没有装上,也可以使用下方命令安装CUDNN:

conda install cudnn=7.0.5 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/

其中CUDA的版本可以自己更改,我改成了9.2.0,CUDNN应该也可以改,不过我没有尝试。
这篇文章还展示了Tensorflow不同版本要求与CUDA及CUDNN版本对应关系,一般我们都是装好了tensorflow-gpu,然后需要对应版本的CUDA及CUDNN,可以让大家参考一下。
仍然是在激活的环境中安装tensorflow,比如我的CUDA是9.2.0,我的CUDNN是7.2.1,那么对应的Tensorflow就可以安装1.5.0,如下方命令所示:

pip install tensorflow-gpu==1.5.0

以上所安装的Python、CUDA、CUDNN以及Tensorflow都是在虚拟环境中安装的,下次想要使用该环境时或者在该环境安装其他库包文件,需要重新进入虚拟环境。与之前的代码一样,如下:

source activate your_env_name

查询当前环境下的库的版本号可使用以下命令:

conda list cudnn
conda list cuda
### 如何在虚拟机或虚拟化环境中安装配置 CUDA #### 背景说明 通常情况下,在普通的虚拟机环境中安装 CUDAcuDNN 是不可行的,因为大多数虚拟机软件(如 VirtualBox 或 VMware Workstation)不支持 GPU 的完全硬件加速功能。这使得虚拟机无法识别主机的真实显卡型号,从而导致 CUDA 安装失败[^1]。 然而,通过特定的技术手段(如 GPU 直通技术),可以实现在某些高级虚拟化平台上的 CUDA 配置和支持。以下是详细的解决方案: --- #### 方法一:使用 GPU 直通技术 对于支持 GPU 直通的虚拟化平台(如 VMware vSphere 或 Proxmox VE),可以通过以下步骤完成 CUDA安装和配置: 1. **启用 GPU 直通** - 确保宿主机已正确配置并启用了 IOMMU 功能。 - 将物理 GPU 映射至目标虚拟机中,使虚拟机能直接访问真实的 GPU 设备[^3]。 2. **验证 GPU 是否可用** - 登录到虚拟机后,执行 `nvidia-smi` 命令以确认 GPU 已被正确识别。 ```bash nvidia-smi ``` 3. **下载并安装 CUDA Toolkit** - 下载适用于当前系统的 CUDA 版本安装包。 ```bash wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600 ``` - 添加 NVIDIA 的官方仓库并更新系统索引。 ```bash sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/7fa2af80.pub sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/ /" sudo apt-get update sudo apt-get install -y cuda ``` 4. **设置环境变量** - 修改用户的 `.bashrc` 文件或者全局 `/etc/profile.d/` 中的相关脚本,添加如下路径: ```bash export PATH=/usr/local/cuda-11.4/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-11.4/lib64:$LD_LIBRARY_PATH source ~/.bashrc ``` 5. **安装 cuDNN 库** - 解压 cuDNN 文件并将其中的内容复制到对应的 CUDA 目录下。 ```bash tar -xzvf cudnn-11.4-linux-x64-v8.2.2.26.tgz sudo cp cuda/include/cudnn*.h /usr/local/cuda/include/ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn* ``` --- #### 方法二:Conda 虚拟环境中的 CUDA 安装 如果仅需在 Conda 虚拟环境中运行 PyTorch 或 TensorFlow 类似框架而无需依赖本地 GPU 加速,则可以直接利用 Conda 来管理 CUDA 依赖项: 1. 创建一个新的 Conda 环境并激活它。 ```bash conda create -n myenv python=3.9 conda activate myenv ``` 2. 使用 Conda 安装指定版本的 CUDA 支持库。 ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` 此方法适合于那些只需要模拟 CUDA 行为而不涉及实际 GPU 计算的任务场景[^2]。 --- #### 注意事项 - 如果尝试在不具备 GPU 直通能力的标准桌面级虚拟机上部署 CUDA,可能会遭遇兼容性和性能瓶颈等问题。 - 对于生产用途建议考虑双操作系统或多节点集群架构作为替代方案来充分利用硬件资源。 ---
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值