模型部署 - onnx的导出和分析 - onnx 注册自定义算子 - 学习记录

本文详细介绍了如何在PyTorch中手写并注册自定义算子,将其整合到模型定义中,以及使用torch.onnx.export()函数导出ONNX模型的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


一般我们自定义算子的时候,有以下流程

  1. 编写算子并注册
  2. 将算子放进模型定义
  3. 利用 torch.onnx.export() 编写 onnx 导出函数

第一步:手写一个算子,然后注册一下

(注册就是在正常的 forward 之前加一个 symbolic 函数)
(如何注册理解 symbolic 参考上个博客

class CustomOp(torch.autograd.Function):
    
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值