风起云涌

记录IT人生

MAPREDUCE实践WORDCOUNT

1、 MAPREDUCE 示例编写及编程规范

编程规范

(1)用户编写的程序分成三个部分MapperReducerDriver(提交运行mr程序的客户端)

(2)Mapper的输入数据是KV对的形式(KV的类型可自定义)

(3)Mapper的输出数据是KV对的形式(KV的类型可自定义)

(4)Mapper中的业务逻辑写在map()方法中

(5)map()方法(maptask进程)对每一个<K,V>调用一次

(6)Reducer的输入数据类型对应Mapper的输出数据类型,也是KV

(7)Reducer的业务逻辑写在reduce()方法中

(8)Reducetask进程对每一组相同k<k,v>组调用一次reduce()方法

(9)用户自定义的MapperReducer都要继承各自的父类

(10)整个程序需要一个Drvier来进行提交,提交的是一个描述了各种必要信息的job对象


wordcount示例编写

需求:在一堆给定的文本文件中统计输出每一个单词出现的总次数

(1)定义一个mapper

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

/**
 * KEYIN: 默认情况下,是mr框架所读到的一行文本的起始偏移量,Long,
 * 但是在hadoop中有自己的更精简的序列化接口,所以不直接用Long,而用LongWritable
 * 
 * VALUEIN:默认情况下,是mr框架所读到的一行文本的内容,String,同上,用Text
 * 
 * KEYOUT:是用户自定义逻辑处理完成之后输出数据中的key,在此处是单词,String,同上,用Text
 * VALUEOUT:是用户自定义逻辑处理完成之后输出数据中的value,在此处是单词次数,Integer,同上,用IntWritable
 * 
 * @author
 *
 */

public class WordcountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{

	/**
	 * map阶段的业务逻辑就写在自定义的map()方法中
	 * maptask会对每一行输入数据调用一次我们自定义的map()方法
	 */
	@Override
	protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
		
		//将maptask传给我们的文本内容先转换成String
		String line = value.toString();
		//根据空格将这一行切分成单词
		String[] words = line.split(" ");
		
		//将单词输出为<单词,1>
		for(String word:words){
			//将单词作为key,将次数1作为value,以便于后续的数据分发,可以根据单词分发,以便于相同单词会到相同的reduce task
			context.write(new Text(word), new IntWritable(1));
		}
	}

(2)定义一个reducer类

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

/**
 * 生命周期:框架每传递进来一个kv 组,reduce方法被调用一次
 * KEYIN, VALUEIN 对应  mapper输出的KEYOUT,VALUEOUT类型对应
 * 
 * KEYOUT, VALUEOUT 是自定义reduce逻辑处理结果的输出数据类型
 * KEYOUT是单词
 * VLAUEOUT是总次数
 * @author
 *
 */
public class WordcountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{

	/**
	 * <ang,1><ang,1><ang,1><ang,1><ang,1>
	 * <hello,1><hello,1><hello,1><hello,1><hello,1><hello,1>
	 * <banana,1><banana,1><banana,1><banana,1><banana,1><banana,1>
	 * 入参key,是一组相同单词kv对的key
	 */
	@Override
	protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {

		int count=0;
		/*Iterator<IntWritable> iterator = values.iterator();
		while(iterator.hasNext()){
			count += iterator.next().get();
		}*/
		
		for(IntWritable value:values){
		
			count += value.get();
		}
		
		context.write(key, new IntWritable(count));		
	}	
}

(3)定义一个主类,用来描述job并提交job

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;


/**
 * 相当于一个yarn集群的客户端
 * 需要在此封装我们的mr程序的相关运行参数,指定jar包
 * 最后提交给yarn
 * @author
 *
 */
public class WordcountDriver {
	
	public static void main(String[] args) throws Exception {
		
		if (args == null || args.length == 0) {
			args = new String[2];
			args[0] = "hdfs://master:9000/wordcount/input/wordcount.txt";
			args[1] = "hdfs://master:9000/wordcount/output8";
		}
		
		Configuration conf = new Configuration();
		
		//设置的没有用!  ??????
//		conf.set("HADOOP_USER_NAME", "hadoop");
//		conf.set("dfs.permissions.enabled", "false");
		
		
		/*conf.set("mapreduce.framework.name", "yarn");
		conf.set("yarn.resoucemanager.hostname", "mini1");*/
		Job job = Job.getInstance(conf);
		
		/*job.setJar("/home/hadoop/wc.jar");*/
		//指定本程序的jar包所在的本地路径
		job.setJarByClass(WordcountDriver.class);
		
		//指定本业务job要使用的mapper/Reducer业务类
		job.setMapperClass(WordcountMapper.class);
		job.setReducerClass(WordcountReducer.class);
		
		//指定mapper输出数据的kv类型
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(IntWritable.class);
		
		//指定最终输出的数据的kv类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);
		
		//指定job的输入原始文件所在目录
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		//指定job的输出结果所在目录
		FileOutputFormat.setOutputPath(job, new Path(args[1]));
		
		//将job中配置的相关参数,以及job所用的java类所在的jar包,提交给yarn去运行
		/*job.submit();*/
		boolean res = job.waitForCompletion(true);
		System.exit(res?0:1);
		
	}
	
}

2、 MAPREDUCE程序运行模式

本地运行模式

(1)mapreduce程序是被提交给LocalJobRunner在本地以单进程的形式运行

(2)而处理的数据及输出结果可以在本地文件系统,也可以在hdfs

(3)怎样实现本地运行?写一个程序,不要带集群的配置文件(本质是你的mr程序的conf中是否有mapreduce.framework.name=local以及yarn.resourcemanager.hostname参数)

(4)本地模式非常便于进行业务逻辑的debug,只要在eclipse中打断点即可

如果在windows下想运行本地模式来测试程序逻辑,需要在windows中配置环境变量:

HADOOP_HOME  =  d:/hadoop-2.6.1

%PATH% =  HADOOP_HOME\bin

并且要将d:/hadoop-2.6.1libbin目录替换成windows平台编译的版本

集群运行模式

(1)mapreduce程序提交给yarn集群resourcemanager,分发到很多的节点上并发执行

(2)处理的数据和输出结果应该位于hdfs文件系统

(3)提交集群的实现步骤:

A、将程序打成JAR包,然后在集群的任意一个节点上用hadoop命令启动(普通jar:export---->Java---->JAR file---->Next---->JAR file(c:\wordcount.jar))

     命令: hadoop jar wordcount.jar cn.itcast.bigdata.mr.wcdemo.WordcountDriver /wordcount/input /wordcount/output

  如果将hadoop的jar包打入到jar包中,可以使用命令:java -jar wordcount.jar cn.itcast.bigdata.mr.wcdemo.WordcountDriver /wordcount/input /wordcount/output

B、直接在linuxeclipse中运行main方法

(项目中要带参数:mapreduce.framework.name=yarn以及yarn的两个基本配置)

C、如果要在windowseclipse中提交job给集群,则要修改YarnRunner

mapreduce程序在集群中运行时的大体流程:


附:在windows平台上访问hadoop时改变自身身份标识的方法之二:



3、 MAPREDUCE中的Combiner

(1)combinerMR程序中MapperReducer之外的一种组件

(2)combiner组件的父类就是Reducer

(3)combinerreducer的区别在于运行的位置:

Combiner是在每一个maptask所在的节点运行

Reducer是接收全局所有Mapper的输出结果;

(4) combiner的意义就是对每一个maptask的输出进行局部汇总,以减小网络传输量

具体实现步骤:

1、  自定义一个combiner继承Reducer,重写reduce方法

2、  job中设置:  job.setCombinerClass(CustomCombiner.class)

(5) combiner能够应用的前提是不能影响最终的业务逻辑

而且,combiner的输出kv应该跟reducer的输入kv类型要对应起来


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/weixin_40747272/article/details/79962997
个人分类: HADOOP
上一篇MAPREDUCE原理篇(1)
下一篇MAPREDUCE实践流量汇总
博主设置当前文章不允许评论。

WordcountReduce

2017年12月27日 52KB 下载

没有更多推荐了,返回首页

关闭
关闭