t-SNE(t-distributed stochastic neighbor embedding)

t-SNE(t-distributed stochastic neighbor embedding)是用于降维的一种机器学习算法,是由 Laurens van der Maaten 和 Geoffrey Hinton在08年提出来。此外,t-SNE 是一种非线性降维算法,非常适用于高维数据降维到2维或者3维,进行可视化。

t-SNE是由SNE(Stochastic Neighbor Embedding, SNE; Hinton and Roweis, 2002)发展而来。我们先介绍SNE的基本原理,之后再扩展到t-SNE。最后再看一下t-SNE的实现以及一些优化。

1.SNE

1.1基本原理

SNE是通过仿射(affinitie)变换将数据点映射到概率分布上,主要包括两个步骤:

我们看到t-SNE模型是非监督的降维,他跟kmeans等不同,他不能通过训练得到一些东西之后再用于其它数据(比如kmeans可以通过训练得到k个点,再用于其它数据集,而t-SNE只能单独的对数据做操作,也就是说他只有fit_transform,而没有fit操作)

1.2 SNE原理推导

SNE是先将欧几里得距离转换为条件概率来表达点与点之间的相似度。具体来说,给定一个N个高维的数据 x1,...,xN

(注意N不是维度), t-SNE首先是计算概率pij,正比于xi和xj

之间的相似度(这种概率是我们自主构建的),即:

pj∣i=exp(−∣∣xi−xj∣∣2/(2σ2i))∑k≠iexp(−∣∣xi−xk∣∣2/(2σ2i))

这里的有一个参数是σi

,对于不同的点xi取值不一样,后续会讨论如何设置。此外设置px∣x=0

,因为我们关注的是两两之间的相似度。

那对于低维度下的yi

,我们可以指定高斯分布为方差为12√

,因此它们之间的相似度如下:

qj∣i=exp(−∣∣xi−xj∣∣2)∑k≠iexp(−∣∣xi−xk∣∣2)

同样,设定qi∣i=0

.

如果降维的效果比较好,局部特征保留完整,那么 pi∣j=qi∣j

, 因此我们优化两个分布之间的距离-KL散度(Kullback-Leibler divergences),那么目标函数(cost function)如下:

C=∑iKL(Pi∣∣Qi)=∑i∑jpj∣ilogpj∣iqj∣i

这里的Pi

表示了给定点xi下,其他所有数据点的条件概率分布。需要注意的是KL散度具有不对称性,在低维映射中不同的距离对应的惩罚权重是不同的,具体来说:距离较远的两个点来表达距离较近的两个点会产生更大的cost,相反,用较近的两个点来表达较远的两个点产生的cost相对较小(注意:类似于回归容易受异常值影响,但效果相反)。即用较小的 qj∣i=0.2 来建模较大的 pj∣i=0.8, cost=plog(pq)=1.11,同样用较大的qj∣i=0.8来建模较大的pj∣i=0.2

, cost=-0.277, 因此,SNE会倾向于保留数据中的局部特征

思考:了解了基本思路之后,你会怎么选择σ

,固定初始化?

下面我们开始正式的推导SNE。首先不同的点具有不同的σi

,Pi的熵(entropy)会随着σi的增加而增加。SNE使用困惑度(perplexity)的概念,用二分搜索的方式来寻找一个最佳的σ

。其中困惑度指:

Perp(Pi)=2H(Pi)

这里的H(Pi)

是Pi

的熵,即:

H(Pi)=−∑jpj∣ilog2pj∣i

困惑度可以解释为一个点附近的有效近邻点个数。SNE对困惑度的调整比较有鲁棒性,通常选择5-50之间,给定之后,使用二分搜索的方式寻找合适的σ

 

那么核心问题是如何求解梯度了,目标函数等价于∑∑−plog(q)

这个式子与softmax非常的类似,我们知道softmax的目标函数是∑−ylogp,对应的梯度是y−p(注:这里的softmax中y表示label,p表示预估值)。 同样我们可以推导SNE的目标函数中的i在j下的条件概率情况的梯度是2(pi∣j−qi∣j)(yi−yj), 同样j在i下的条件概率的梯度是2(pj∣i−qj∣i)(yi−yj)

, 最后得到完整的梯度公式如下:

δCδyi=2∑j(pj∣i−qj∣i+pi∣j−qi∣j)(yi−yj)

在初始化中,可以用较小的σ

下的高斯分布来进行初始化。为了加速优化过程和避免陷入局部最优解,梯度中需要使用一个相对较大的动量(momentum)。即参数更新中除了当前的梯度,还要引入之前的梯度累加的指数衰减项,如下:

Y(t)=Y(t−1)+ηδCδY+α(t)(Y(t−1)−Y(t−2))

这里的Y(t)

表示迭代t次的解,η表示学习速率,α(t)

表示迭代t次的动量。

此外,在初始优化的阶段,每次迭代中可以引入一些高斯噪声,之后像模拟退火一样逐渐减小该噪声,可以用来避免陷入局部最优解。因此,SNE在选择高斯噪声,以及学习速率,什么时候开始衰减,动量选择等等超参数上,需要跑多次优化才可以。

思考:SNE有哪些不足? 面对SNE的不足,你会做什么改进?

2.t-SNE

尽管SNE提供了很好的可视化方法,但是他很难优化,而且存在”crowding problem”(拥挤问题)。后续中,Hinton等人又提出了t-SNE的方法。与SNE不同,主要如下:

  • 使用对称版的SNE,简化梯度公式
  • 低维空间下,使用t分布替代高斯分布表达两点之间的相似度

t-SNE在低维空间下使用更重长尾分布的t分布来避免crowding问题和优化问题。在这里,首先介绍一下对称版的SNE,之后介绍crowding问题,之后再介绍t-SNE。

2.1 Symmetric SNE

优化pi∣j

和qi∣j

的KL散度的一种替换思路是,使用联合概率分布来替换条件概率分布,即P是高维空间里各个点的联合概率分布,Q是低维空间下的,目标函数为:

C=KL(P∣∣Q)=∑i∑jpi,jlogpijqij

这里的pii

,qii为0,我们将这种SNE称之为symmetric SNE(对称SNE),因为他假设了对于任意i,pij=pji,qij=qji

,因此概率分布可以改写为:

pij=exp(−∣∣xi−xj∣∣2/2σ2)∑k≠lexp(−∣∣xk−xl∣∣2/2σ2)    qij=exp(−∣∣yi−yj∣∣2)∑k≠lexp(−∣∣yk−yl∣∣2)

这种表达方式,使得整体简洁了很多。但是会引入异常值的问题。比如xi

是异常值,那么∣∣xi−xj∣∣2会很大,对应的所有的j, pij都会很小(之前是仅在xi下很小),导致低维映射下的yi

对cost影响很小。

思考: 对于异常值,你会做什么改进?pi

表示什么?

为了解决这个问题,我们将联合概率分布定义修正为: pij=pi∣j+pj∣i2

, 这保证了∑jpij>12n

, 使得每个点对于cost都会有一定的贡献。对称SNE的最大优点是梯度计算变得简单了,如下:

δCδyi=4∑j(pij−qij)(yi−yj)

实验中,发现对称SNE能够产生和SNE一样好的结果,有时甚至略好一点。

2.2 Crowding问题

拥挤问题就是说各个簇聚集在一起,无法区分。比如有一种情况,高维度数据在降维到10维下,可以有很好的表达,但是降维到两维后无法得到可信映射,比如降维如10维中有11个点之间两两等距离的,在二维下就无法得到可信的映射结果(最多3个点)。 进一步的说明,假设一个以数据点xi

为中心,半径为r的m维球(三维空间就是球),其体积是按rm增长的,假设数据点是在m维球中均匀分布的,我们来看看其他数据点与xi

的距离随维度增大而产生的变化。

show png

从上图可以看到,随着维度的增大,大部分数据点都聚集在m维球的表面附近,与点xi

的距离分布极不均衡。如果直接将这种距离关系保留到低维,就会出现拥挤问题。

怎么解决crowding问题呢?

Cook et al.(2007) 提出一种slight repulsion的方式,在基线概率分布(uniform background)中引入一个较小的混合因子ρ

,这样qij就永远不会小于2ρn(n−1) (因为一共了n(n-1)个pairs),这样在高维空间中比较远的两个点之间的qij总是会比pij大一点。这种称之为UNI-SNE,效果通常比标准的SNE要好。优化UNI-SNE的方法是先让ρ为0,使用标准的SNE优化,之后用模拟退火的方法的时候,再慢慢增加ρ. 直接优化UNI-SNE是不行的(即一开始ρ不为0),因为距离较远的两个点基本是一样的qij(等于基线分布), 即使pij很大,一些距离变化很难在qij中产生作用。也就是说优化中刚开始距离较远的两个聚类点,后续就无法再把他们拉近了。

2.3 t-SNE

对称SNE实际上在高维度下 另外一种减轻”拥挤问题”的方法:在高维空间下,在高维空间下我们使用高斯分布将距离转换为概率分布,在低维空间下,我们使用更加偏重长尾分布的方式来将距离转换为概率分布,使得高维度下中低等的距离在映射后能够有一个较大的距离。

show png

我们对比一下高斯分布和t分布(如上图,code见probability/distribution.md), t分布受异常值影响更小,拟合结果更为合理,较好的捕获了数据的整体特征。

使用了t分布之后的q变化,如下:

qij=(1+∣∣yi−yj∣∣2)−1∑k≠l(1+∣∣yi−yj∣∣2)−1

此外,t分布是无限多个高斯分布的叠加,计算上不是指数的,会方便很多。优化的梯度如下:

δCδyi=4∑j(pij−qij)(yi−yj)(1+∣∣yi−yj∣∣2)−1

t-sne的有效性,也可以从上图中看到:横轴表示距离,纵轴表示相似度, 可以看到,对于较大相似度的点,t分布在低维空间中的距离需要稍小一点;而对于低相似度的点,t分布在低维空间中的距离需要更远。这恰好满足了我们的需求,即同一簇内的点(距离较近)聚合的更紧密,不同簇之间的点(距离较远)更加疏远。

总结一下,t-SNE的梯度更新有两大优势:

  • 对于不相似的点,用一个较小的距离会产生较大的梯度来让这些点排斥开来。
  • 这种排斥又不会无限大(梯度中分母),避免不相似的点距离太远。

2.4 算法过程

算法详细过程如下:

  • Data: X=x1,...,xn
  •  
  • 计算cost function的参数:困惑度Perp
  • 优化参数: 设置迭代次数T, 学习速率η
  • , 动量α(t)
  •  
  • 目标结果是低维数据表示 YT=y1,...,yn
  •  
  • 开始优化
    • 计算在给定Perp下的条件概率pj∣i
  • (参见上面公式)
  • 令 pij=pj∣i+pi∣j2n
  •  
  • 用 N(0,10−4I)
  • 随机初始化 Y
  • 迭代,从 t = 1 到 T, 做如下操作:
    • 计算低维度下的 qij
  • (参见上面的公式)
  • 计算梯度(参见上面的公式)
  • 更新 Yt=Yt−1+ηdCdY+α(t)(Yt−1−Yt−2)
      •  
    • 结束
  • 结束

优化过程中可以尝试的两个trick:

  • 提前压缩(early compression):开始初始化的时候,各个点要离得近一点。这样小的距离,方便各个聚类中心的移动。可以通过引入L2正则项(距离的平方和)来实现。
  • 提前夸大(early exaggeration):在开始优化阶段,pij

乘以一个大于1的数进行扩大,来避免因为qij太小导致优化太慢的问题。比如前50次迭代,pij

  • 乘以4

优化的过程动态图如下:

optimise

2.5 不足

主要不足有四个:

  • 主要用于可视化,很难用于其他目的。比如测试集合降维,因为他没有显式的预估部分,不能在测试集合直接降维;比如降维到10维,因为t分布偏重长尾,1个自由度的t分布很难保存好局部特征,可能需要设置成更高的自由度。
  • t-SNE倾向于保存局部特征,对于本征维数(intrinsic dimensionality)本身就很高的数据集,是不可能完整的映射到2-3维的空间
  • t-SNE没有唯一最优解,且没有预估部分。如果想要做预估,可以考虑降维之后,再构建一个回归方程之类的模型去做。但是要注意,t-sne中距离本身是没有意义,都是概率分布问题。
  • 训练太慢。有很多基于树的算法在t-sne上做一些改进

3.变种

  • multiple maps of t-SNE
  • parametric t-SNE
  • Visualizing Large-scale and High-dimensional Data
  • 4
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值