ElasticSearch 文档路由,你的数据到底存在哪一个分片上_06

本文详细阐述了Elasticsearch如何通过哈希算法分配文档到分片,讲解了默认路由和自定义路由的原理及优缺点,以及在用户数据管理中的应用实例。

es 是一个分布式系统,当我们存储一个文档到 es 上之后,这个文档实际上是被存储到 master 节点中的某一个主分片上。

例如新建一个索引,该索引有两个分片,0个副本,如下:
在这里插入图片描述
接下来,向该索引中保存一个文档:

PUT blog/_doc/a
{
  "title":"a"
}

文档保存成功后,可以查看该文档被保存到哪个分片中去了:

GET _cat/shards/blog?v

查看结果如下:

index shard prirep state   docs store ip        node
blog  1     p      STARTED    0  208b 127.0.0.1 slave01
blog  0     p      STARTED    1 3.6kb 127.0.0.1 master

从这个结果中,可以看出,文档被保存到分片 0 中。

那么 es 中到底是按照什么样的规则去分配分片的?

es 中的路由机制是通过哈希算法,将具有相同哈希值的文档放到一个主分片中,分片位置的计算方式如下:

shard=hash(routing) % number_of_primary_shards

routing 可以是一个任意字符串,es 默认是将文档的 id 作为 routing 值,通过哈希函数根据 routing 生成一个数字,然后将该数字和分片数取余,取余的结果就是分片的位置。

默认的这种路由模式,最大的优势在于负载均衡,这种方式可以保证数据平均分配在不同的分片上。但是他有一个很大的劣势,就是查询时候无法确定文档的位置,此时它会将请求广播到所有的分片上去执行。另一方面,使用默认的路由模式,后期修改分片数量不方便。

当然开发者也可以自定义 routing 的值,方式如下:

PUT blog/_doc/d?routing=javaboy
{
  "title":"d"
}

如果文档在添加时指定了 routing,则查询、删除、更新时也需要指定 routing。

GET blog/_doc/d?routing=javaboy

自定义 routing 有可能会导致负载不均衡,这个还是要结合实际情况选择。

典型场景:

对于用户数据,我们可以将 userid 作为 routing,这样就能保证同一个用户的数据保存在同一个分片中,检索时,同样使用 userid 作为 routing,这样就可以精准的从某一个分片中获取数据。

<think>好的,我现在需要回答用户关于如何为有400多万数据的表设计Elasticsearch分片,并如何使用Java写入数据的问题。首先,我需要回顾之前用户的问题和我的历史回答,以确保这次回答的一致性和补充性。 用户之前询问了如何查看ES中的数据,我详细介绍了各种查询方法、工具以及注意事项。现在用户的问题是针对大数据量表的分片设计和Java写入,所以需要切换角度,从索引设计和高性能写入的角度来考虑。 首先,分片设计方面,我需要解释分片的基本概念,主分片和副本分片的作用。对于400万的数据量,虽然不算特别大,但合理的分片设计仍然重要,以确保性能和扩展性。通常建议每个分片大小在10GB到50GB之间,但需要结合具体数据大小。用户需要先估算每条文档的大小,计算总数据量,再确定分片数。例如,如果每条文档是1KB,400万条就是4GB,一个分片可能足够,但考虑未来增长,可以设置为2-3个主分片。副本分片根据可用节点数设置,通常1-2个。 接下来,分片设计的最佳实践,比如避免过度分片、结合硬件资源、使用索引模板等。需要考虑数据增长、查询模式,比如时间序列数据可能需要按时间滚动索引。 然后是Java写入数据的部分。需要介绍使用High Level REST Client,包括依赖配置、客户端初始化、批量写入(BulkProcessor)以及使用自定义ID和路由优化。还需要提到写入优化技巧,比如调整刷新间隔、禁用副本写入、使用异步写入等。 注意事项部分需要涵盖索引设置的事前规划、性能监控、错误处理机制。比如分片数一旦确定不能修改,需要提前规划。写入时要处理可能的异常,如重试机制。 常见问题排查可能包括写入速度慢、分片不均衡等,需要给出相应的解决方案,比如调整批量大小或检查硬件资源。 现在需要确保回答结构清晰,分点说明,同时提供代码示例,比如Java的BulkProcessor配置,以及索引设置的示例。同时要注意与之前的回答不重复,但可以适当参考之前的建议,比如在写入时提到之前提到的刷新策略。 可能还需要补充一些实际例子,比如如何计算分片数,或者给出具体的索引模板JSON示例。同时,需要确认用户的数据是否有时序性,是否需要使用ILM(索引生命周期管理),但用户的问题中没有提到,所以可能暂时不需要深入,但可以简要提及。 最后,确保语言简洁,技术点准确,提供用户可直接操作的步骤和建议,避免过于理论化。</think>--- 针对 **400多万条数据表** 的 Elasticsearch 分片设计及 Java 写入实现,需综合考虑数据规模、查询性能、扩展性等因素。以下是分片策略与 Java 写入的完整方案: --- ### 一、分片设计原则 #### 1. **分片数量计算** - **核心公式**: ``` 总分片数 = 主分片数 &times; (1 + 副本分片数) ``` - **数据规模估算**: 假设单条文档大小为 **1KB**,400万数据总量约 **4GB**。推荐主分片数为 **2-3个**(单分片容量建议控制在10-50GB)。 - **示例配置**: ```json PUT /your_index { "settings": { "number_of_shards": 2, // 主分片数(创建后不可修改) "number_of_replicas": 1 // 副本分片数(可动态调整) } } ``` #### 2. **分片设计最佳实践** | 场景 | 策略 | |---------------------|--------------------------------------------------------------------| | **数据持续增长** | 使用 [Rollover Index](https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-rollover-index.html) 按时间或大小自动切分新索引 | | **高频查询** | 增加副本分片提升读取吞吐量(副本数 ≤ 节点数) | | **写入密集型** | 减少副本分片(甚至临时设为0),写入完成后再恢复副本 | | **字段类型优化** | 对 `text` 字段添加 `keyword` 子类型,避免动态映射性能问题 | #### 3. **路由优化(Routing)** 通过自定义路由键(如用户ID)将相关数据分配到同一分片,提升查询效率: ```java IndexRequest request = new IndexRequest("your_index") .id("document_id") .source(jsonMap, XContentType.JSON) .routing("user123"); // 指定路由键 ``` --- ### 二、Java 写入数据实现 #### 1. **依赖配置** ```xml <dependency> <groupId>org.elasticsearch.client</groupId> <artifactId>elasticsearch-rest-high-level-client</artifactId> <version>7.17.0</version> </dependency> ``` #### 2. **客户端初始化** ```java RestHighLevelClient client = new RestHighLevelClient( RestClient.builder(new HttpHost("localhost", 9200, "http")) ); ``` #### 3. **批量写入(Bulk API)** 使用 `BulkProcessor` 提升吞吐量: ```java BulkProcessor bulkProcessor = BulkProcessor.builder( (request, bulkListener) -> client.bulkAsync(request, RequestOptions.DEFAULT, bulkListener), new BulkProcessor.Listener() { @Override public void beforeBulk(long executionId, BulkRequest request) {} @Override public void afterBulk(long executionId, BulkRequest request, BulkResponse response) { if (response.hasFailures()) { log.error("Bulk write failed: {}", response.buildFailureMessage()); } } @Override public void afterBulk(long executionId, BulkRequest request, Throwable failure) { log.error("Fatal bulk error", failure); } }) .setBulkActions(1000) // 每1000条提交一次 .setBulkSize(new ByteSizeValue(5, ByteSizeUnit.MB)) // 每5MB提交 .setFlushInterval(TimeValue.timeValueSeconds(5)) // 5秒自动刷新 .build(); // 添加文档 for (DataItem item : dataList) { IndexRequest indexRequest = new IndexRequest("your_index") .source(item.toJson(), XContentType.JSON); bulkProcessor.add(indexRequest); } // 最后手动刷新 bulkProcessor.flush(); ``` #### 4. **写入优化技巧** - **异步写入**:使用 `client.indexAsync()` 非阻塞写入 - **调整刷新间隔**:写入期间临时关闭自动刷新 ```java UpdateSettingsRequest request = new UpdateSettingsRequest("your_index"); request.settings(Settings.builder() .put("index.refresh_interval", "30s") // 默认1s,写入时调大 .put("index.number_of_replicas", 0) // 写入时禁用副本 ); client.indices().putSettings(request, RequestOptions.DEFAULT); ``` --- ### 三、分片与写入的注意事项 | 类别 | 关键点 | |--------------------|----------------------------------------------------------------------| | **分片规划** | - 主分片数一旦创建不可修改,需提前预估数据增长<br>- 每个节点分片数建议 ≤ 1000 | | **性能监控** | 通过 `_cat/thread_pool?v` 监控 `write` 队列,避免写入拒绝 | | **错误处理** | 实现重试机制(指数退避算法),处理 `EsRejectedExecutionException` | | **硬件资源** | SSD 磁盘优先,JVM 堆内存分配不超过 32GB(避免 GC 停顿) | --- ### 四、扩展场景设计 #### 1. **时间序列数据** 使用 `Index Lifecycle Management (ILM)` 自动管理历史数据: ```json PUT _ilm/policy/hot_warm_policy { "policy": { "phases": { "hot": { "actions": { "rollover": { "max_size": "50GB", "max_age": "30d" } } }, "warm": { "min_age": "60d", "actions": { "allocate": { "require": { "data": "warm" } } } } } } } ``` #### 2. **分布式ID生成** 避免使用 ES 自动生成ID,推荐: - **雪花算法**(Snowflake) - **UUID**(确保全局唯一) --- ### 五、常见问题排查 | 现象 | 解决方案 | |---------------------|------------------------------------------------------------------------| | **写入速度慢** | 1. 增大批量提交大小 (`bulk_size`)<br>2. 检查磁盘IO性能<br>3. 减少副本分片数 | | **节点CPU过高** | 1. 降低 `index.refresh_interval`<br>2. 优化文档字段类型(避免嵌套过多) | | **分片不均衡** | 使用 `_cluster/reroute` 手动调整,或设置 `index.routing.allocation.total_shards_per_node` | --- 通过合理分片设计与 Java 写入优化,400万数据量可在 Elasticsearch 中实现 **毫秒级写入响应** 与 **高效查询**。实际部署前建议进行压力测试,根据硬件资源调整参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gblfy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值