树转换为二叉树
将树转换为二叉树的步骤如下:
1.加线。在所有(亲)兄弟结点之间加一条连线。
2.去线。对树中每个结点,只保留它与第一个孩子结点的连线,删除它与其他孩子结点之间的连线。
3.层次分明。以树的根结点为轴心,将整棵树顺时针旋转一定角度,使其层次分明。注意第一个孩子是二叉树结点的左孩子,兄弟转换过来的孩子是结点的右孩子。
具体如下图所示:
森林转换为二叉树
森林由若干棵树组成,可以理解为森林的每棵树都是兄弟,可以按照兄弟的处理办法来操作。
将森林转换为二叉树的步骤如下:
1.把每棵树转换为二叉树(参考上述方法)。
2.第一棵二叉树不动,从第二棵二叉树开始,依次把后一棵二叉树的根结点作为前一棵二叉树的根结点的右孩子,用线连接起来。当所有的二叉树连接起来后就得到了由森林转换来的二叉树。
具体如下图所示:
二叉树转换为树
二叉树转换为树是树转换为二叉树的逆过程,即反过来做。
将森林转换为二叉树的步骤如下:
1.加线。若某结点的左孩子结点存在,则将这个孩子的右孩子结点、右孩子的右孩子结点、右孩子的右孩子的右孩子结点……,反正就是左孩子的n个右孩子结点都作为此结点的孩子。将该结点与这些右孩子结点用线连接起来。
2.去线。删除原二叉树中所有节点与右孩子结点的连线。
3.层次调整。使之结构层次分明。
具体如下图所示:
二叉树转换为森林
判断一棵二叉树能够转换成一棵树还是森林,标准很简单,只要看这棵树的根结点有没有右孩子,有的话就是森林,没有的话就是一棵树。
将二叉树转换为森林的步骤如下:
1.从根结点开始,若右孩子存在,则将其与右孩子结点的连线删除,再查看分离后的二叉树,若右孩子存在,则连线删除…..直到所有右孩子的连线都删除为止,得到分离后的二叉树。
2.将每棵分离后的二叉树转换为树即可。
具体如下图所示:
树与森林的遍历
树的遍历分为两种方式:
1.一种是先根遍历,即先访问树的根节点,然后依次先根遍历根的每棵子树。
2.另一种是后根遍历,即依次后根遍历每棵子树,然后再访问根结点。
森林的遍历也分为两种方式:
1.一种是前序遍历,即先访问森林第一棵树的根结点,再依次先根遍历根的每棵子树,再一次用同样的方式遍历除去第一棵树的剩余树构成的森林。。
2.另一种是后序遍历,即先访问森林中第一棵树,后根遍历的方式遍历每棵子树,然后在访问根结点,再一次同样方式遍历除去第一棵树的生育树构成的森林。
分析发现,森林的前序遍历和二叉树的前序遍历结果相同,森林的后序遍历和二叉树的中序遍历结果相同。也就是说,当以二叉链表作为树的存储结构时,树的先根遍历和后跟便利完全可以借用二叉树的前序遍历和中序遍历的算法来实现,找到了对树和森林这种复杂问题的简单解决方法。