四、向量自回归模型(VAR)
1. 原理
VAR 模型用于建模多个时间序列变量之间的相互依赖关系。与 ARMA 模型只对单一时间序列进行建模不同,VAR 模型能够处理多变量时间序列,捕捉它们之间的动态关系。
2. 核心公式
推导:
3. 优缺点
1)优点:
- 能够处理多个时间序列变量,适合多变量时间序列数据的分析。
- 能捕捉变量之间的动态相互关系。
2)缺点:
- 模型复杂度高,参数量大,尤其是当变量数目和滞后阶数都很大时。
- 对数据的要求较高,尤其是数据量需要足够大以保证模型稳定性。
4. 适用场景
VAR 模型适用于多个经济、金融或社会时间序列变量的建模与预测,如宏观经济指标(GDP、通货膨胀率、失业率)之间的关系分析。
5. 核心案例代码
图中展示了两个时间序列变量的观测数据(蓝色和绿色)以及未来 10 天的预测值(橙色和红色虚线)。VAR 模型能有效捕捉两个变量之间的动态关系。