代码随想录算法训练营第四十六天| 第九章 动态规划:139.单词拆分,关于多重背包你该了解这些,背包问题总结篇(python)

动态规划解背包问题
博客介绍了如何使用动态规划解决单词拆分和多重背包问题。在单词拆分问题中,通过建立dp数组找到字符串能被字典中单词拆分的可能性。在多重背包问题中,将物品展开成01背包问题,并通过动态规划找到最大价值的物品组合。涉及关键概念包括动态规划、01背包、多重背包和物品展开策略。

目录

139.单词拆分

关于多重背包你该了解这些

背包问题总结篇


139.单词拆分

视频讲解链接    文字讲解链接

class Solution:
    def wordBreak(self, s: str, wordDict: List[str]) -> bool:
        n = len(s)
        dp = [False] * (n+1) 
        dp[0] = True
        for j in range(1, n+1): #遍历背包容量,即s的容量
            for i in range(j): #遍历物品:在j前的字符串寻找
                if dp[i] and (s[i:j] in wordDict) or dp[j]: #如果dp[i]是true且i到j可以在字典中找到,或者dp[j]自身就满足条件
                    dp[j] = True
        return dp[-1]

关于多重背包你该了解这些

文字讲解链接

问题描述:有N种物品和一个容量为V 的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci ,价值是Wi 。求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量,且价值总和最大。

方法:可以摊开成01背包问题,再用01背包的解决方法解决,代码如下。

def test_multi_pack():
    weight = [1, 3, 4]
    value = [15, 20, 30]
    nums = [2, 3, 2]
    bag_weight = 10
    for i in range(len(nums)):
        # 将物品展开数量为1
        while nums[i] > 1:
            weight.append(weight[i])
            value.append(value[i])
            nums[i] -= 1
    
    dp = [0]*(bag_weight + 1)
    for i in range(len(weight)): # 遍历物品
        for j in range(bag_weight, weight[i] - 1, -1): # 遍历背包
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
    
    print(" ".join(map(str, dp)))

背包问题总结篇

文字讲解链接

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值