目录
139.单词拆分
class Solution:
def wordBreak(self, s: str, wordDict: List[str]) -> bool:
n = len(s)
dp = [False] * (n+1)
dp[0] = True
for j in range(1, n+1): #遍历背包容量,即s的容量
for i in range(j): #遍历物品:在j前的字符串寻找
if dp[i] and (s[i:j] in wordDict) or dp[j]: #如果dp[i]是true且i到j可以在字典中找到,或者dp[j]自身就满足条件
dp[j] = True
return dp[-1]
关于多重背包你该了解这些
问题描述:有N种物品和一个容量为V 的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci ,价值是Wi 。求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量,且价值总和最大。
方法:可以摊开成01背包问题,再用01背包的解决方法解决,代码如下。
def test_multi_pack():
weight = [1, 3, 4]
value = [15, 20, 30]
nums = [2, 3, 2]
bag_weight = 10
for i in range(len(nums)):
# 将物品展开数量为1
while nums[i] > 1:
weight.append(weight[i])
value.append(value[i])
nums[i] -= 1
dp = [0]*(bag_weight + 1)
for i in range(len(weight)): # 遍历物品
for j in range(bag_weight, weight[i] - 1, -1): # 遍历背包
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
print(" ".join(map(str, dp)))
动态规划解背包问题
博客介绍了如何使用动态规划解决单词拆分和多重背包问题。在单词拆分问题中,通过建立dp数组找到字符串能被字典中单词拆分的可能性。在多重背包问题中,将物品展开成01背包问题,并通过动态规划找到最大价值的物品组合。涉及关键概念包括动态规划、01背包、多重背包和物品展开策略。
1948

被折叠的 条评论
为什么被折叠?



