平移标定
由上一章仿射变换矩阵可知有6个自由变量,那只需要3对不共线的视觉坐标和机器坐标就能够得到这个六个参数。但实际上考虑到各种误差:机构,相机,图像算法...,我们通常会用更多点来提高标定精度,最通用的坐标自然是9点标定。
在计算机视觉及机器人相关领域,对于姿态估计和坐标变换等问题,当仅存在 3 个点时,通常可采用几何方法来计算自由变量。然而,一旦点的数量增加,例如增加一个点,此时仅依靠几何方法将难以求解,最优化理论便应运而生。最优化理论主要涵盖线性优化和非线性优化两大部分。在此,我们着重阐述两种常用的最优化方法,即 RANSAC 算法和最小二乘法。
最小二乘法的核心思想是通过最小化误差的平方和来对数据进行拟合。该方法对于输入数据有着较高的要求,需要数据具备高质量、低噪声以及较少的外点等特性。由于其数学模型相对简单,在计算效率方面具有一定优势,因此广泛应用于诸如实验数据拟合等对数据精度要求较高且数据质量相对较好的场景。
与之相对的是 RANSAC 算法,其通过随机抽样的方式,并能够有效地对数据中的内点和外点进行区分,以此来估计所需的数学模型。此方法尤其擅长处理包含大量外点的数据,不过,由于其随机抽样的特性,在计算过程中往往需要多次迭代,导致计算效率相对较低,所以在计算机视觉等易受外点干扰的复杂场景中应用较多。尽管 RANSAC 算法具有处理外点的优势,但在实际工程应用中,基于计算效率和数据特性等综合考量,最小二乘法仍然是较为常用的方法。
关于最小二乘法的具体原理,在此暂不赘述。
旋转标定
在旋转标定方面,存在以下几个值得关注的问题:
问题一:分离轴问题
在旋转标定过程中,会涉及到分离轴的概念。值得注意的是,分离轴的手性可能与机器人坐标系的手性不一致。这种手性不一致的情况会对后续的坐标计算产生影响,为了确保系统的准确性和可靠性,可能需要与机器人工程领域的专家进行深入探讨,以寻求解决该问题的有效途径。
问题二:不共轴问题
在实际的机器人操作中,可能由于加装工具或其他复杂因素,导致机构的坐标精度不高,进而产生不共轴的问题。为解决此问题,需要计算出旋转中心。具体的解决思路是,通过让机器人或相应设备多移动 5 个点,利用圆拟合算法来得出旋转中心的精确坐标。
综上所述,在整个旋转标定过程中,最终需要精确得出旋转中心的坐标,并确保系统的手性与机器人坐标系的手性相匹配,以满足后续精确的操作和计算需求。