[剑指offer]面试题 9:斐波那契数列(扩展:青蛙跳台阶、矩阵覆盖)

面试题 9:斐波那契数列(扩展:青蛙跳台阶、矩阵覆盖)

tag: array fibonacci 动态规划

leetcode: LCR 126. 斐波那契数

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给定 n ,请计算 F(n) 。

答案需要取模 1e9+7(1000000007) ,如计算初始结果为:1000000008,请返回 1。
//递归并非好的算法,毕竟有重复计算
public static int fibonacci(int n) {
    if (n <= 1) {
        // 0是0,而不是1
        return n;
    }

    return fibonacci(n - 1) + fibonacci(n - 2);
}

// 循环保存中间变量
public static int fibonacciIterative(int n) {
    // 保存中间计算结果
    if (n <= 1) {
        return n;
    }
    int f = 0;
    int s = 0;
    int current = 0;

    // 终点是N
    for (int i = 2; i <= n; i++) {
        // 从第3个开始,即i ==2
        current = f + s;
        f = s;
        s = current;
    }

    return current;
}
// 动态规划
public static int fibonacciDP(int n) {
    if (n <= 1) {
        return n;
    }

    // 长度要大于n,因为多存了0
    int[] dp = new int[n + 1];
    dp[0] = 0;
    dp[1] = 1;
    for (int i = 2; i <=n ; i++) {
        dp[i] = dp[i - 1] + dp[i - 2];
        // 在循环过程中每次计算 sum=(a+b)⊙1000000007 ,此操作与最终返回前取余等价
        dp[i] %= 1000000007;
    }
    return dp[n];
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值