给c种不同颜色宝石能穿成多少种长度为s的宝石项链(本质不同)
Burnside定理的应用:
当n为奇数时,有n种翻转,每种翻转都是以一个顶点和该顶点对边的中点对称。有k^(n/2+1)*n种。
当n为偶数时,有n种翻转,其中一半是以两个对应顶点,另一半是以两条对边对称。有k^(n/2+1)*n/2+k^(n/2)*n/2种。
考虑旋转:枚举旋转角度360/n*i,(0<i<=n),也就是一个置换。经过该置换,颜色仍保持不变的着色方案有k^GCD(n,i)种。
一个长度为n的环,每i个上同一种颜色,可以上多少种颜色。
假设起点在x,则x,x+i,x+2*i,……,x+k*i,……
假设在第t次,第一次回到起点,则x=(x+t*i)%n => t*i%n=0 => t=LCM(i,n)/i=n*i/GCD(n,i)/i=n/GCD(n,i)。
那么可以上n/t种颜色,即n/(n/GCD(n,i))种,所以旋转的着色方案有k^GCD(n,i)种。
-
#include<cstdio>
-
#include<iostream>
-
-
using
namespace
std;
-
-
-
typedef
long
long ll;
-
-
ll power(ll a,ll b)
-
{
-
ll ans=
1ll;
-
while(b)
-
{
-
if(b&
1)
-
ans=ans*a;
-
a=a*a;
-
b=b>>
1;
-
}
-
return ans;
-
}
-
ll gcd(ll a,ll b)
-
{
-
return b ? gcd(b,a%b) : a;
-
}
-
int main()
-
{
-
int c,s;
-
ll ans;
-
while(
scanf(
"%d%d",&c,&s)!=EOF)
-
{
-
if(s&
1)
-
ans=power(c,s/
2+
1)*s;
-
else
-
ans=power(c,s/
2)*(s/
2)+power(c,s/
2+
1)*(s/
2);
-
for(
int i=
1;i<=s;i++)
-
ans+=power(c,gcd(s,i));
-
printf(
"%lld\n",(ans/
2)/s);
-
}
-
return
0;
-
}